Differentiable Convex Optimization Layers

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico Kolter

Neural Information Processing Systems, 2019

Convex optimization layers

- A convex optimization problem can be viewed as a function mapping a parameter \(\theta \in \mathbb{R}^n \) to a solution \(x(\theta) \); this map is sometimes differentiable.
- Prior work has shown how to differentiate through convex cone programs.
- We show how to differentiate through high-level descriptions of convex optimization programs, specified in a domain-specific language for convex optimization.
- We implement our method in CVXPY, TensorFlow 2.0, and PyTorch.

Solution map

We represent a parametrized disciplined convex program as the composition \(R \circ C \):
- The canonicalizer \(C \) converts a DCP-compliant program to the problem data for a convex cone program.
- The solver \(s \) solves a convex cone program.
- The retriever \(R \) retrieves a solution for the original program.

We mildly restrict DCP to ensure that \(C \) and \(R \) are affine. This means that we can differentiate through the DSL, without explicitly backpropagating through it.

Disciplined parametrized programming

We introduce disciplined parametrized programming (DPP). DPP programs have the form

\[
\begin{align*}
\text{minimize} & \quad f_0(x, \theta) \\
\text{subject to} & \quad f_i(x, \theta) \leq f_i(x, \theta), \quad i = 1, \ldots, m_1, \\
& \quad g_i(x, \theta) = \tilde{g}_i(x, \theta), \quad i = 1, \ldots, m_2,
\end{align*}
\]

- \(\theta \in \mathbb{R}^n \) is a parameter.
- \(f_i \) are convex, \(\tilde{f}_i \) are concave
- \(g_i \) and \(\tilde{g}_i \) are affine

DPP is a subset of DCP that does parameter-dependent analysis:
- parameters are treated as affine
- the product of a parameter-affine and parameter-free expression is affine

DPP guarantees that \(C \) and \(R \) are affine.

Differentiation

The adjoint of the derivative of a disciplined parametrized program is

\[
\begin{align*}
D^T S(\theta) &= D^T C(\theta) D^T S(A, b, c) D^T R(\tilde{z}^T).
\end{align*}
\]

Because \(C \) and \(R \) are affine, \(D^T C \) and \(D^T R \) are easy to compute. We use prior work to differentiate through \(s \) [1].

Experiments

Figure 1: Gradients (black lines) of the training set with respect to the Adam optimizer.

Figure 2: Per-iteration cost while learning an ADP policy for stochastic control.

References
