
CVXPY: A Rewriting System for Convex Optimization

Akshay Agrawal, Steven Diamond, Stephen Boyd

Stanford University

February 23, 2021



Convex optimization



Optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

gi(x) = 0, i = 1, . . . , p

I x ∈ Rn is (vector) variable to be chosen

I f0 is the objective function, to be minimized

I f1, . . . , fm are the inequality constraint functions

I g1, . . . , gp are the equality constraint functions

Goal: find a value for x that minimizes f0(x), while satisfying constraints



Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = 0

I equality constraint functions are affine

I f0, . . . , fm are convex: for θ ∈ [0, 1],

fi(θx + (1− θ)y) ≤ θfi(x) + (1− θ)fi(y)

i.e., fi curve upward



Why convex optimization?

I solution algorithms that work well, in theory and practice

I many applications in
I machine learning, statistics
I control
I signal, image processing
I networking
I engineering design
I finance

. . . and many more



How do you solve a convex optimization problem?

use someone else’s (‘standard’) solver

I your problem must be written in a standard form

I analogous to writing machine code

write your own (custom) solver

I lots of work, but can take advantage of special structure

this talk: use a domain-specific language

I transforms user-friendly format into solver-friendly standard form

I extends reach of problems solvable by standard solvers



Domain-specific languages



Domain-specific languages (DSLs)

I DSLs make it easy to specify and solve convex problems

I Grammar and semantics based on a rule from convex analysis [GBY06]

I Examples: CVXPY, CVXR, Convex.jl, CVX

p0

DSL Front End Analyzer

LP

QP

SDP

CFP

Back Ends

Si

S2

S1
...

...

Sk

Rewriting System

pn

Solver



Example

CVXPY is a Python-embedded DSL [DB16; AVD+18]

1 import cvxpy as cp

2

3 x = cp.Variable()

4 y = cp.Variable()

5

6 objective = cp.Minimize(cp.maximum(x + y + 2, -x - y))

7 constraints = [x <= 0, y == -0.5]

8

9 problem = cp.Problem(objective, constraints)

10 assert problem.is_dcp()

11 optimal_value = problem.solve()



Example

I First, CVXPY analyzes the problem and checks that it’s valid (convex)

I Next, CVXPY reduces the problem into a low-level form

e.g., problem is equivalent to a linear program, with form

minimize cTx
subject to Gx ≤ h

Ax = b,

G =

 1 1 −1
−1 −1 −1
1 0 0

 , A =
[
0 1 0

]
, c =

0
0
1

 , h =

−2
0
0

 , b = −0.5

I Finally, CVXPY solves the problem via a numerical solver



Analysis



Grammar

I CVXPY’s grammar consists of atomic functions (atoms) and a rule for
combining them

I atoms have known curvature (convex, concave, affine) and monotonicity
(increasing, decreasing) (log, exp, square, sum, . . . )

I rule guarantees that compositions of atoms have known curvature

I grammar is called disciplined convex programming

Composition rule: h(f1(x), . . . , fk(x)) is convex when h is convex and for each i

I h is increasing in argument i , and fi is convex, or

I h is decreasing in argument i , and fi is concave, or

I fi is affine



Analysis

I A problem object is represented as a collection of expression trees

I Nodes are atoms; leaves are variables and numeric constants

I Each tree represents a composition of atoms

I CVXPY checks whether a problem is DCP by recursively checking the
composition rule for each tree



Analysis
I Convex optimization problems can be organized into a hierarchy of classes

I Different solvers support different classes

I Each supported class has its own grammar (typically a subset of DCP)

I By default, CVXPY targets the most specific class possible

LP

QP

SDP

CP



Other grammars

I CVXPY is easily extended to support grammars other than DCP

I e.g., DGP [ADB19] for geometric programs, DQCP [AB20] for quasiconvex
programs, . . .

I Grammar-checking implementation uncoupled from atom implementation

I Decision to add new grammar based on various factors

I usefulness
I implementation ease
I maintainability
I taste / aesthetics



Reductions



Reductions

I CVXPY transforms the original problem via a sequence of reductions

I A reduction converts a problem into a different but equivalent problem

I Each reduction has three methods:

accepts, which defines the class of problems the reduction can accept
reduce, which takes a problem and reduces it to another
retrieve, which retrieves a solution to the original problem from a solution
to the emitted problem

canonicalization

p1 pn

...

p0

s1 sn
...

s0

retrieval

solver



Reductions

Some examples:

I FlipObjective

I Complex2Real

I Dcp2Cone

I Dgp2Dcp

I Dqcp2Dcp

I EliminatePwl

I Qp2SymbolicQp

I MatrixStuffing, ConeMatrixStuffing, QpMatrixStuffing

I change of variables, presolves, and more . . .



Reductions

A simple example: the FlipObjective reduction.

Accepts:
maximize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = 0

Reduces to:
minimize −f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = 0

Retrieval: a no-op (solutions are identitical)



Standard form

I A chain of reductions ends with a targeted standard form

I The modern standard form is the cone program

minimize cTx
subject to Ax = b, x ∈ K

where K is a Cartesian product of convex cones

I Special cases include linear programs, semidefinite programs

I There are several solvers for cone programs (SCS, ECOS, MOSEK, . . . )



Other standard forms

Reduction system makes it easy to add other problem classes

I quadratic programs:

minimize 1
2
xTPx + qTx

subject to l ≤ Ax ≤ u

I linearly constrained least squares:

minimize ‖Ax − b‖2
2

subject to Fx = g

I nonlinear programs:
minimize f (x)

where f : Rn → R is differentiable



Reduction chains

Reductions are chained together to target a standard form

I Qp2SybmolicQp → QpMatrixStuffing → OSQP

I Complex2Real → Dcp2Cone → ConeMatrixStuffing → ECOS

I Dgp2Dcp → Dcp2Cone → ConeMatrixStuffing → SCS

CVXPY builds these reduction chains automatically, behind-the-scenes



Recent extensions



Parametrized programs

minimize f0(x ; θ)
subject to fi(x ; θ) ≤ 0, i = 1, . . . , p

A(θ)x = b(θ)

I Objective function and constraints often depend on some numerical
parameters θ

I With some mild assumptions, the mapping from θ to problem data of the
final reduced-to problem is affine

I We can represent CVXPY’s rewriting by multiplication with a sparse matrix

I This fact enables two new features: efficiently differentiating through convex
optimization problems, and code generation



Differentiating through CVXPY

Solution map of a parametrized CVXPY problem: x?(θ) = (R ◦ S ◦ C )(θ)

I Problem is canonicalized (C) to a standard form

I The canonicalized problem is solved (S)

I A solution for the original problem is retrieved (R)

I We can efficiently differentiate through C , S , and R [AAB+19]

θ x (θ)C S R



Exporting to PyTorch and TensorFlow

cvxpylayers: an open-source library for exporting CVXPY problems to PyTorch
and TensorFlow

https://github.com/cvxgrp/cvxpylayers

https://github.com/cvxgrp/cvxpylayers


Tuning a Markowitz policy

0 5 10 15 20

Stage

−0.5

0.0

0.5

1.0

H
o
ld

in
g
s

Untuned

0 5 10 15 20

Stage

−0.5

0.0

0.5

1.0

H
o
ld

in
g
s

Tuned

0 5 10 15 20

Stage

�0.5

0.0

0.5

1.0

H
o
ld

in
g
s

Tuned

VTI

VEA

VWO

VNQ

XLE

BND

SCHP

VTEB

VIG

Figure: left: untuned; right: policy with tuned constraints, mean and covariance



Tracking a vehicle trajectory

10 0 10 20 30 40
0

10

20

30

40

50

60

30 20 10 0 10 20 30 40
0

10

20

30

40

50

60

70

100 101

expected cost

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

co
un

t

untrained COCP
trained COCP

Figure: left: untrained path; middle: trained path: right: expected cost histogram.



Code generation

I Extracts sparse matrices representing the rewriting

I Generates C code that takes parameters, calls solver, and returns solution

I Lets you deploy solvers in real-time applications

I Coming soon . . .



Summary

CVXPY is a modular rewriting system for convex optimization that makes convex
optimization more accessible to researchers and engineers alike by abstracting
away low-level numerical solvers.

I Simple grammar lets users specify problems that are verifiably convex

I Analysis phase matches a high-level problem with a low-level problem class

I Reduction system makes it easy to add new grammars and solvers

I Rewriting is amenable to optimizations when parameters are used

https://cvxpy.org

https://cvxpy.org


References

[AAB+19] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex optimization layers. In Advances
in Neural Information Processing Systems. 2019.

[AB20] A. Agrawal and S. Boyd. Disciplined quasiconvex programming. Optimization Letters 14.7 (2020), pp. 1643–1657.

[ADB19] A. Agrawal, S. Diamond, and S. Boyd. Disciplined geometric programming. Optimization Letters 13.5 (2019), pp. 961–976.

[AVD+18] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. A rewriting system for convex optimization problems. Journal of
Control and Decision 5.1 (2018), pp. 42–60.

[DB16] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine
Learning Research 17.1 (2016), pp. 2909–2913.

[GBY06] M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming. In Global optimization. Springer, 2006, pp. 155–210.


	References

