CVXPY: A Rewriting System for Convex Optimization

Akshay Agrawal, Steven Diamond, Stephen Boyd

Stanford University

February 23, 2021

Convex optimization

Optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & g_i(x)=0, \quad i=1,\ldots,p \end{array}$$

- $x \in \mathbf{R}^n$ is (vector) variable to be chosen
- ▶ *f*₀ is the *objective function*, to be minimized
- f_1, \ldots, f_m are the inequality constraint functions
- g_1, \ldots, g_p are the equality constraint functions

Goal: find a value for x that minimizes $f_0(x)$, while satisfying constraints

Convex optimization problem

$$\begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i = 1, \dots, m \\ & Ax = 0 \end{array}$$

i.e., *f_i* curve upward

◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ◆ ● ◆

Why convex optimization?

solution algorithms that work well, in theory and practice

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

many applications in

- machine learning, statistics
- control
- signal, image processing
- networking
- engineering design
- finance
- ... and many more

How do you solve a convex optimization problem?

use someone else's ('standard') solver

- your problem must be written in a standard form
- analogous to writing machine code

write your own (custom) solver

Iots of work, but can take advantage of special structure

this talk: use a domain-specific language

- transforms user-friendly format into solver-friendly standard form
- extends reach of problems solvable by standard solvers

Domain-specific languages

Domain-specific languages (DSLs)

- DSLs make it easy to specify and solve convex problems
- Grammar and semantics based on a rule from convex analysis [GBY06]
- Examples: CVXPY, CVXR, Convex.jl, CVX

Example

CVXPY is a Python-embedded DSL [DB16; AVD⁺18]

```
1
      import cvxpy as cp
2
3
      x = cp.Variable()
4
      y = cp.Variable()
5
6
      objective = cp.Minimize(cp.maximum(x + y + 2, -x - y))
7
      constraints = [x <= 0, v == -0.5]
8
9
      problem = cp.Problem(objective, constraints)
10
      assert problem.is_dcp()
11
      optimal_value = problem.solve()
```

Example

First, CVXPY analyzes the problem and checks that it's valid (convex)

Next, CVXPY reduces the problem into a low-level form e.g., problem is equivalent to a linear program, with form

$$\begin{array}{ll} \text{minimize} & c^{\mathsf{T}}x\\ \text{subject to} & Gx \leq h\\ & Ax = b, \end{array}$$

 $G = \begin{bmatrix} 1 & 1 & -1 \\ -1 & -1 & -1 \\ 1 & 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}, \quad c = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad h = \begin{bmatrix} -2 \\ 0 \\ 0 \end{bmatrix}, \quad b = -0.5$

Finally, CVXPY solves the problem via a numerical solver

Analysis

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Grammar

- CVXPY's grammar consists of atomic functions (atoms) and a rule for combining them
- atoms have known curvature (convex, concave, affine) and monotonicity (increasing, decreasing) (log, exp, square, sum, ...)
- rule guarantees that compositions of atoms have known curvature
- grammar is called disciplined convex programming

Composition rule: $h(f_1(x), \ldots, f_k(x))$ is convex when h is convex and for each i

- h is increasing in argument i, and f_i is convex, or
- \blacktriangleright h is decreasing in argument i, and f_i is concave, or
- \blacktriangleright f_i is affine

Analysis

- A problem object is represented as a collection of expression trees
- Nodes are atoms; leaves are variables and numeric constants
- Each tree represents a composition of atoms
- CVXPY checks whether a problem is DCP by recursively checking the composition rule for each tree

Analysis

- Convex optimization problems can be organized into a hierarchy of classes
- Different solvers support different classes
- Each supported class has its own grammar (typically a subset of DCP)
- By default, CVXPY targets the most specific class possible

Other grammars

- CVXPY is easily extended to support grammars other than DCP
- e.g., DGP [ADB19] for geometric programs, DQCP [AB20] for quasiconvex programs, ...

- Grammar-checking implementation uncoupled from atom implementation
- Decision to add new grammar based on various factors
 - usefulness
 - implementation ease
 - maintainability
 - taste / aesthetics

<□> <0</p>

- CVXPY transforms the original problem via a sequence of reductions
- A reduction converts a problem into a different but equivalent problem
- Each reduction has three methods:

accepts, which defines the class of problems the reduction can accept reduce, which takes a problem and reduces it to another retrieve, which retrieves a solution to the original problem from a solution to the emitted problem

Some examples:

- FlipObjective
- Complex2Real
- ▶ Dcp2Cone
- ► Dgp2Dcp
- Dqcp2Dcp
- EliminatePwl
- Qp2SymbolicQp
- MatrixStuffing, ConeMatrixStuffing, QpMatrixStuffing

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

change of variables, presolves, and more ...

A simple example: the FlipObjective reduction.

Accepts:

$$\begin{array}{ll} \text{maximize} & f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=0 \end{array}$$

Reduces to:

$$\begin{array}{ll} \text{minimize} & -f_0(x) \\ \text{subject to} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & Ax=0 \end{array}$$

Retrieval: a no-op (solutions are identitical)

Standard form

A chain of reductions ends with a targeted standard form

▶ The modern standard form is the *cone program*

minimize $c^T x$ subject to Ax = b, $x \in \mathcal{K}$

where ${\cal K}$ is a Cartesian product of convex cones

- Special cases include linear programs, semidefinite programs
- ▶ There are several solvers for cone programs (SCS, ECOS, MOSEK, ...)

Other standard forms

Reduction system makes it easy to add other problem classes quadratic programs:

minimize
$$\frac{1}{2}x^T P x + q^T x$$

subject to $I \le Ax \le u$

Inearly constrained least squares:

minimize $||Ax - b||_2^2$ subject to Fx = g

nonlinear programs:

minimize f(x)

where $f : \mathbf{R}^n \to \mathbf{R}$ is differentiable

Reduction chains

Reductions are chained together to target a standard form

- ▶ Qp2SybmolicQp \rightarrow QpMatrixStuffing \rightarrow OSQP
- $\blacktriangleright \texttt{Complex2Real} \rightarrow \texttt{Dcp2Cone} \rightarrow \texttt{ConeMatrixStuffing} \rightarrow \texttt{ECOS}$
- ▶ Dgp2Dcp → Dcp2Cone → ConeMatrixStuffing → SCS

CVXPY builds these reduction chains automatically, behind-the-scenes

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Recent extensions

・ロト・4日・4日・4日・日・900

Parametrized programs

$$\begin{array}{ll} \text{minimize} & f_0(x;\theta) \\ \text{subject to} & f_i(x;\theta) \leq 0, \quad i=1,\ldots,p \\ & A(\theta)x = b(\theta) \end{array}$$

- Objective function and constraints often depend on some numerical parameters θ
- With some mild assumptions, the mapping from θ to problem data of the final reduced-to problem is *affine*
- ▶ We can represent CVXPY's rewriting by multiplication with a sparse matrix
- This fact enables two new features: efficiently differentiating through convex optimization problems, and code generation

Differentiating through CVXPY

Solution map of a parametrized CVXPY problem: $x^*(\theta) = (R \circ S \circ C)(\theta)$

- ▶ Problem is *canonicalized* (C) to a standard form
- The canonicalized problem is solved (S)
- ► A solution for the original problem is *retrieved* (R)
- ▶ We can efficiently differentiate through C, S, and R [AAB+19]

$$\theta \longrightarrow C \longrightarrow S \longrightarrow R \longrightarrow x^{*}(\theta)$$

Exporting to PyTorch and TensorFlow

 $\tt cvxpylayers:$ an open-source library for exporting CVXPY problems to PyTorch and TensorFlow

https://github.com/cvxgrp/cvxpylayers

Tuning a Markowitz policy

Figure: left: untuned; right: policy with tuned constraints, mean and covariance

イロト 不得 トイヨト イヨト

∃ 990

Tracking a vehicle trajectory

Figure: left: untrained path; middle: trained path: right: expected cost histogram.

Code generation

- Extracts sparse matrices representing the rewriting
- Generates C code that takes parameters, calls solver, and returns solution

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- Lets you deploy solvers in real-time applications
- Coming soon . . .

Summary

CVXPY is a modular rewriting system for convex optimization that makes convex optimization more accessible to researchers and engineers alike by abstracting away low-level numerical solvers.

Simple grammar lets users specify problems that are verifiably convex

- Analysis phase matches a high-level problem with a low-level problem class
- Reduction system makes it easy to add new grammars and solvers
- Rewriting is amenable to optimizations when parameters are used

https://cvxpy.org

References

[AAB ⁺ 19]	A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter. Differentiable convex optimization layers. In Advances in Neural Information Processing Systems. 2019.
[AB20]	A. Agrawal and S. Boyd. Disciplined quasiconvex programming. Optimization Letters 14.7 (2020), pp. 1643–1657.
[ADB19]	A. Agrawal, S. Diamond, and S. Boyd. Disciplined geometric programming. Optimization Letters 13.5 (2019), pp. 961–976.
[AVD ⁺ 18]	A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. A rewriting system for convex optimization problems. <i>Journal of Control and Decision</i> 5.1 (2018), pp. 42–60.
[DB16]	S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex optimization. <i>Journal of Machine Learning Research</i> 17.1 (2016), pp. 2909–2913.
[GBY06]	M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming. In Global optimization. Springer, 2006, pp. 155–210.