Minimum-Distortion Embedding

Akshay Agrawal Stanford University

July 19 2021

Research at Stanford

- A. Agrawal, R. Verschueren, S. Diamond, S.Boyd. *A rewriting system for convex optimization problems*. Journal of Control and Decision, 2018.
- A. Agrawal, et al. *TensorFlow Eager: A multi-stage, Python-embedded DSL for machine learning.* SysML, 2019.
- A. Agrawal, S. Diamond, S.Boyd. Disciplined geometric programming. Optimization Letters, 2019.
- A. Agrawal, S.Boyd. Disciplined quasiconvex programming. Optimization Letters, 2020.
- A. Agrawal, S. Barratt, S. Boyd, S.Diamond, J. Z. Kolter. *Differentiating through a cone program.* Journal of Applied and Numerical Optimization, 2019.
- A. Agrawal, B. Amos, S. Barratt, S. Boyd, S.Diamond, J. Z. Kolter. *Differentiable convex optimization layers*. NeurIPS, 2020.
- A. Agrawal, S. Boyd. Differentiating through log-log convex programs. Pre-print, 2020.
- A. Agrawal, S. Barratt, S. Boyd, B. Stellato. *Learning convex optimization control policies*. Learning for Dynamics and Control, 2020.
- A. Agrawal, S. Barratt, S. Boyd. *Learning convex optimization models*. IEEE Journal of Automatica Sinica, 2020.
- A. Agrawal, S. Boyd, D. Narayanan, F. Kazhamiaka, M. Zaharia. Allocation of fungible resources via a fast, scalable price discovery method. Pre-print, 2021.
- A. Agrawal, J. Zhang, S. Boyd. Doubly projected gradient methods. Draft.

A. Agrawal, A. Ali, S. Boyd. *Minimum-Distortion Embedding.* Foundations and Trends in Machine Learning, 2021.

contributions:

- ▶ a framework unifying over a century's worth of work on embedding
- a novel algorithm for approximately solving embedding problems (implemented in PyMDE)

Embedding

Minimum-distortion embedding

Historical examples

Algorithms

Examples

Outline

Embedding

Minimum-distortion embedding

Historical examples

Algorithms

Examples

- ▶ representation of abstract items (1, ..., n) by vectors $(x_1, ..., x_n \in \mathbf{R}^m)$
- used for data visualization or insight, downstream computational tasks
- should be faithful to original data in some way
 - if two items are similar, vectors should be near each other
 - if two items are dissimilar, vectors should not be near each other
 - similarity is a property of pairs of *items*, and is application dependent
 - nearness is a property of pairs of vectors, measured in Euclidean distance

MNIST

- handwritten digits
- 70k images
- 1.5M pairs of similar/dissimilar images
- embed into 2 dimensions

MNIST

Applications

- interactive data exploration
 - counties
 - co-authorship networks
 - citation networks
 - genomes
 - single-cell mRNA transcriptomes
 - cardiac muscle movement
 - rocks and minerals
 - stock exchange orders
 - words
 - news documents
 - (PyMDE has been used for all the above)

- dimensionality reduction
- ▶ feature generation

History: 1900-1960s

- early research in psychology
 - principal component analysis [Pea01]
 - multi-dimensional scaling [Ric38]

tractable (reduce to eigenproblems)

History: 1990s-2000

- dimensionality reduction methods
 - Isomap
 - locally-linear embedding
 - maximum variance unfolding
 - Laplacian embedding
- tractable (reduce to eigenproblems)

History: 2000-present

- emphasis on "solving" nonconvex problems
 - t-SNE
 - LargeVis
 - UMAP
 - neural networks
- not tractable (rely on heuristics)

This talk

► a general framework for faithful embedding

- exactly reproduces many historical examples
- approximately reproduces others
- generates new kinds of embeddings
- an efficient heuristic optimization algorithm

Embedding

Minimum-distortion embedding

Historical examples

Algorithms

Examples

Embedding

▶ an embedding of items $V = \{1, ..., n\}$ items is a matrix

 $X \in \mathbf{R}^{n imes m}$

- rows x_1^T, \ldots, x_n^T are the embedding vectors
- ▶ *m* columns are features

Distortion

quality of an embedding is a function of the distances

$$d_{ij} = \|x_i - x_j\|_2, \quad (i, j) \in \mathcal{E} \subseteq \mathcal{V} imes \mathcal{V} \quad (i < j)$$

each pair (i, j) ∈ E has an associated distortion function f_{ij} : R₊ → R
distortion of the embedding for (i, j) ∈ E is

 $f_{ij}(d_{ij})$

examples

 $f_{ij}(d_{ij}) = w_{ij}d_{ij}^2$ (w_{ij} a weight or similarity score) $f_{ij}(d_{ij}) = (d_{ij} - \delta_{ij})^2$ (δ_{ij} a deviation or original distance)

Minimum-distortion embedding (MDE) problem

minimize E(X)subject to $X \in \mathcal{X}$

•
$$X \in \mathbf{R}^{n imes m}$$
 is the variable

 \blacktriangleright E(X) is the average distortion

$$E(X) = rac{1}{|\mathcal{E}|} \sum_{(i,j)\in\mathcal{E}} f_{ij}(d_{ij})$$

• $\mathcal{X} \subseteq \mathbf{R}^{n \times m}$ is the set of allowable embeddings

Solving MDE problems

- intractable, except in a few special cases that we will see later
- we develop an algorithm that approximately solves MDE problems
 - reliably solves tractable problems
 - reliably finds good embeddings for others

Distortion functions from weights

item pairs $(i,j) \in \mathcal{E}$ have associated weights $w_{ij} \in \mathbf{R}$

- \blacktriangleright $w_{ij} > 0$ means *i* and *j* are similar
- $w_{ij} < 0$ means *i* and *j* are dissimilar
- magnitude of weight conveys degree of (dis)similarity

simplest example is the quadratic:

$$f_{ij}(d_{ij}) = w_{ij}d_{ij}^2$$

Example

captures basic idea of faithfulness:

- vectors for similar items should be near each other
- vectors for dissimilar items should not be near each other

Distortion functions from deviations

item pairs $(i,j) \in \mathcal{E}$ have associated deviations $\delta_{ij} \in \mathbf{R}_+$

• distortion function minimized when $d_{ij} = \delta_{ij}$

Examples

• quadratic:
$$f_{ij}(d_{ij}) = (d_{ij} - \delta_{ij})^2$$

• absolute: $f_{ii}(d_{ii}) = |d_{ii} - \delta_{ii}|$

Firstional: max
$$\{\delta/d, d/\delta\} - 1$$

Pre-processing

- often useful to preprocess raw similarity data
- somewhat of an art, like feature engineering
- assume we have some original deviations
- ► to emphasize local structure
 - similar pairs from k-nearest neighbors of each item
 - distortion functions from weights
 - $w_{ij} = +1$ for neighbors, optionally $w_{ij} = -1$ for non-neighbors
- ▶ to emphasize global structure
 - compute shortest path distances
 - distortion functions that preserve them

Centering constraint

$$\mathcal{C} = \{ X \mid X^T \mathbf{1} = 0 \}$$

- centers the embedding vectors around the origin
- without loss of generality (distances not affected by translation)

Anchor constraint

$$\mathcal{A} = \{X \mid x_i = x_i^{\text{given}}, i \in \mathcal{K}\}$$

- pins embedding vectors for anchored items (K)
- useful for incremental embedding, placement problems

Standardization constraint

$$\mathcal{S} = \{ X \mid \frac{1}{n} X^{\mathsf{T}} X = I, \ X^{\mathsf{T}} \mathbf{1} = 0 \}$$

- feature columns uncorrelated with RMS value 1
- forces vectors to spread out, but not too much

Quadratic MDE problem

distortion functions

$$f_{ij}(d_{ij}) = w_{ij}d_{ij}^2$$

and standardization constraint $S = \{X \mid \frac{1}{n}X^TX = I, X^T\mathbf{1} = 0\}$

- analytical solution via eigenvectors of a certain matrix
- many historical methods are special cases
 - PCA (and kernel PCA)
 - Laplacian eigenmap
 - Isomap
 - locally linear embedding
 - classical MDS
 - maximum variance unfolding

Embedding

Minimum-distortion embedding

Historical examples

Algorithms

Examples

Historical examples

PCA

- ▶ PCA [Pea01] starts with data matrix $Y \in \mathbf{R}^{n \times p}$, with rows $y_1^T, y_2^T, \dots, y_n^T$
- embedding: top *m* eigenvectors of YY^T
- equivalent to solving a quadratic MDE problem with

$$w_{ij} = y_i^T y_j, \quad \mathcal{E} = \{(i,j) \mid 1 \leq i < j \leq n\}$$

interpretation

i and *j* are similar (dissimilar) if angle between y_i and y_j is acute (obtuse)
 neutral to (*i*, *j*) when y_i, y_i are orthogonal

Historical examples

Laplacian eigenmap

- ▶ Laplacian eigenmap [BN02] starts with data matrix $Y \in \mathbf{R}^{n \times p}$
- $(i,j) \in \mathcal{E}$ if y_i is among k-nearest neighbors of y_j
- embedding: m bottom eigenvectors of graph Laplacian (excluding 1)
- equivalent to solving a quadratic MDE problem with $w_{ij} = +1$

UMAP

- ► UMAP [MHM18] is a widely used dimensionality reduction method
- distortion functions from weights, with

$$f_{ij}(d_{ij}) = w_{ij} \log(1 + lpha d^{eta}), \quad w_{ij} > 0$$

and

$$f_{ij}(d_{ij}) = w_{ij} \log \left(rac{d^\gamma}{1+d^\gamma}
ight) \quad w_{ij} < 0$$

(α , β , γ are hyper-parameters); unconstrained

E is a union of a *k*-nearest neighbor graph (edges have positive weights) and random sample of its complement (edges have negative weights)

Embedding

Minimum-distortion embedding

Historical examples

Algorithms

Examples

Stationarity condition

b tangent cone to \mathcal{X} at X is the set

$$\mathcal{T}_X(\mathcal{X}) = \{ V \in \mathbf{R}^{n imes m} \mid \operatorname{dist}(X + hV, \mathcal{X}) = o(h), \ h \to 0 \}$$

- $V \in \mathcal{T}_X(\mathcal{X})$ is called a *tangent* to \mathcal{X} at X

▶ a direction is a feasible descent direction if

$$V \in \mathcal{T}_X(\mathcal{X}), \quad \operatorname{tr}(\nabla E(X)^T V) < 0$$

► X is stationary if the cone of feasible descent directions is empty

Stationarity condition

• projected gradient at X with constraint \mathcal{X} is

 $G = \Pi_{\mathcal{T}_X}(\nabla E(X))$

 \blacktriangleright -G is the steepest feasible descent direction, *i.e.*, the solution to

minimize $\mathbf{tr}(\nabla E(X)^T V) + \frac{1}{2} \|V\|_F^2$ subject to $V \in \mathcal{T}_X(\mathcal{X})$

stationarity condition can be written as

$$G = 0$$

Projections

algorithm requires two projections related to the constraint set $\ensuremath{\mathcal{X}}$

- ▶ $\Pi_{\mathcal{T}_X}$, projection onto tangent cone
- ▶ $\Pi_{\mathcal{X}}$, projection onto constraints
- **>** both are analytical (and cheap) for C, A, and S

example, for standardization constraint \mathcal{S} :

 $\Pi_{\mathcal{T}_X}(Z) = Z - (1/n)XZ^T X, \qquad \Pi_{\mathcal{S}}(Z) = \sqrt{n}UV^T, \quad Z = U\Sigma V^T$

takes $O(nm^2)$ time (usually $m \ll n$)

Traditional projected gradient method

- simplest algorithm is the traditional projected gradient method
- works, but extremely slow

for k = 0, ...

- 1. Projected gradient. Compute gradient $\nabla E(X_k)$
- 2. Line search. Choose step length t_k
- 3. Update. $X_{k+1} := \prod_{\mathcal{X}} (X_k t_k \nabla E(X_k))$
Traditional projected gradient method

 $-\nabla E(X_k)$ X_k Π_X X_{k+1}

(Doubly) projected gradient method

more sophisticated is a doubly projected gradient method

works, but slow

for k = 0, ...

- 1. Projected gradient. Compute projected gradient $G_k = \prod_{\mathcal{T}_X} (\nabla E(X_k))$
- 2. Line search. Choose step length t_k
- 3. Update. $X_{k+1} := \prod_{\mathcal{X}} (X_k t_k G_k)$

(Doubly) projected gradient method

Projected L-BFGS method

- extension of L-BFGS to handle constraints
- gradients replaced with projected gradients
- appears to be new, though just combines some old ideas
- works, and extremely fast

for k = 0, ...

- 1. Projected gradient. Compute projected gradient $G_k = \prod_{\mathcal{T}_{X_k}} (\nabla E(X_k))$
- 2. Search direction. Compute L-BFGS search direction V_k , using G_k
- 3. Line search. Find step length t_k
- 4. Update. $X_{k+1} := \prod_{\mathcal{X}} (X_k + t_k V_k)$

Search direction

in iteration k, search direction $V_k \in \mathbf{R}^{n \times m}$ chosen as

$$\operatorname{vec} V_k = -B_k^{-1} \operatorname{vec} G_k,$$

where $B_k \in \mathbf{S}_{++}^{n imes m}$ is given by the recursion

$$B_{j+1}^{-1} = \left(I - \frac{s_j y_j^T}{y_j^T s}\right) B_j^{-1} \left(I - \frac{y_j s_j^T}{y_j^T s_j}\right) + \frac{s_j s_j^T}{y_j^T s_j}, \quad j = k-1, \ldots, k-M,$$

using $B_{k-M} = \gamma_k I$ (*M* is the memory size), and

$$s_j = \mathbf{vec}(X_{j+1} - X_j), \qquad y_j = \mathbf{vec}(G_{j+1} - G_j), \qquad \gamma_k = \frac{y_{k-1}^T s_{k-1}}{y_{k-1}^T y_{k-1}}$$

Experiments

- quadratic MDE problem, $w_{ij} = +1$, edges chosen uniformly at random
- solved on CPU (quad core, 4GHz)

Experiments

Problem dimensions			Embedding time (s)		Objective values	
n	$ \mathcal{E} $	т	CPU	GPU	$E(X_{\kappa})$	$E(X^{\star})$
10 ³	10 ⁴	2	0.1	0.4	1.432	1.432
10 ³	10^{4}	10	0.2	0.4	7.797	7.795
10 ³	10^{4}	100	0.8	1.5	104.5	104.5
10^{4}	10^{5}	2	0.4	0.4	1.007	1.007
10^{4}	10^{5}	10	0.7	0.4	6.066	6.065
10^{4}	10^{5}	100	20.8	2.9	81.12	81.08
10^{5}	10^{6}	2	2.5	0.6	0.935	0.931
10^{5}	10^{6}	10	10.5	1.2	5.152	5.137
10 ⁵	10 ⁶	100	334.7	15.8	63.61	63.51

Software

solution method implemented in $\ensuremath{\mathsf{PyMDE}}$

- provides library of distortion functions
- extensible
- scales to many millions of items and pairs

code: https://github.com/cvxgrp/pymde
docs: https://pymde.org

Embedding

Minimum-distortion embedding

Historical examples

Algorithms

Examples

Examples

US counties

data:

- ► 3,220 US counties
- represented by 34 features, from 2013-17 ACS 5-Year Estimates
 - demographics, income, employment, commute, ...

embedding:

- ▶ 73k pairs of similar and dissimilar counties
- distortion functions from weights
- \blacktriangleright embed into \mathbf{R}^2
- color by fraction that voted democratic in 2016 presidential election (voting data not used to make embedding)

Examples

Embedding (US counties)

Examples

Co-authorship network

data:

- ► 590k authors scraped from Google Scholar
 - 16k authors with labeled academic discpline (bio, physics, EE, CS, AI)

embedding:

- $\blacktriangleright~\approx$ 88M pairs of authors
- distortion functions to preserve graph distance (absolute loss)
- \blacktriangleright embed into \mathbf{R}^2

Full network embedding (co-authorship network)

Embedding

Academic disciplines (co-authorship network)

Embedding

Summary

- MDE generalizes well-known embedding methods and leads to new ones
- heuristic algorithm scales to millions of items and pairs

Acknowledgements

- PhD advisor Stephen Boyd
- undergrad advisor Mehran Sahami
- undergrad research advisor Andreas Paepcke
- defense committee, Sanjay Lall, Mert Pilanci, Ashok Srivastava
- beta readers and testers of MDE, esp. Dmitry Kobak and Lawrence Saul
- Iab, esp. Alnur Ali, Guillermo Angeris, Shane Barratt, Steven Diamond, Jonathan Tuck, & Junzi Zhang
- friends, too many to name
- family, Sarika, Ajay, and Akansha Agrawal
- Delenn Chin

References

[BN02]	M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural Information Processing Systems. 2002, pp. 585–591.	
[MHM18]	L. McInnes, J. Healy, and J. Melville. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv (2018).	
[Pea01]	K. Pearson. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2.11 (1901), pp. 559–572.	
[Ric38]	M. Richardson. Multidimensional psychophysics. Psychological Bulletin 35 (1938), pp. 659-660.	
[Wil+20]	A. Wilk, A. Rustagi, N. Zhao, J. Roque, G. Martínez-Colón, J. McKechnie, G. Ivison, T. Ranganath, R. Vergara, T. Hollis, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. <i>Nature Medicine</i> (2020), pp. 1–7.	

Sanity checking

- when m is 2 or 3, color by held-out attributes
- check sensitivity by removing some distortion functions & re-embedding
- manually inspect pairs with high distortion; e.g., for MNIST:

ultimately, validation depends on downstream application

Standardization constraint

▶ for
$$X \in \mathcal{S}$$
, $\sum_{1 \leq i < j \leq n} d_{ij}^2 = n^2 m$

▶ the RMS value of the d_{ij} ,

$$d_{nat} = \sqrt{\frac{2nm}{n-1}},$$

can be interpreted as the natural or typical embedding distance

Quadratic MDE problem

equivalent to

minimize $\mathbf{tr}(X^T L X)$ subject to $X \in S$

where $L \in \mathbf{S}^n$ has upper triangular entries

$$L_{ij} = egin{cases} -w_{ij} & (i,j) \in \mathcal{E} \ 0 & ext{otherwise} \end{cases}$$

and diagonal entries $L_{ii} = -\sum_{j \neq i} L_{ij}$

 \blacktriangleright solution stacks *m* bottom eigenvectors of *L*, excluding **1**

Graph layout

Gradient

▶ index the distortion functions (and distances) in some fixed order

$$f_1, f_2, \ldots, f_p, \quad p = |\mathcal{E}|$$

the gradient of the average distortion is

$$abla E(X) = (1/p)ACA^TX, \quad C = \operatorname{diag}(f_1'(d_1)/d_1, \ldots, f_p'(d_p)/d_p),$$

where A is the incidence matrix of \mathcal{E}

- assumption throughout: E is differentiable
 - possibly nondifferentiable when embedding vectors are nondistinct
 - nondifferentiability does not matter in practice

Modified Wolfe conditions

find step length t_k satisfying

$$E(\Pi_{\mathcal{X}}(X_k + t_k V_k)) \leq E(X_k) + c_1 t_k \operatorname{tr}(G_k^T V_k),$$

$$|\operatorname{tr}(G_{k+1}^T V_k))| \leq c_2 |\operatorname{tr}(G_k^T V_k)|,$$

where $0 < c_1 < c_2 < 1$ are constants (typically 10^{-4} and 0.9).

- first inequality is a modified sufficient decrease condition
- second inequality is a modified curvature condition

Experiments (GPU)

- quadratic MDE problem, w_{ij} +1, edges chosen uniformly at random
- solved on GPU (NVIDIA GeForce GTX 1070)

Single-cell genomics

- single-cell mRNA transcriptomes
- ▶ 7 patients with COVID-19, 6 healthy controls [Wil+20]
- 44k cells (1M pairs)
- embed into 3 dimensions
- ▶ 27s CPU, 6s GPU

Single-cell genomics

Single-cell genomics

MNIST

- handwritten digits
- 70k grayscale images
 - 28-by-28 pixels, vectors in ${\rm I\!R}^{784}$

Pre-processing (MNIST)

- \blacktriangleright want pairs of similar and dissimilar items, \mathcal{E}_{sim} and \mathcal{E}_{dis}
- Euclidean distance is a poor global metric on images, but a good local one
- $\blacktriangleright\,$ take \mathcal{E}_{sim} to be 15 Euclidean nearest-neighbors of images
- \blacktriangleright take \mathcal{E}_{dis} to be $|\mathcal{E}_{sim}|$ randomly sampled non-neighbors

$$\blacktriangleright~ \mathcal{E} = \mathcal{E}_{\mathsf{sim}} \cup \mathcal{E}_{\mathsf{dis}}$$
, $|\mathcal{E}| = 1.5 imes 10^6$

Embedding (MNIST)

distortion functions

$$f_{ij}(d_{ij}) = egin{cases} \log(1+d_{ij}^2) & (i,j) \in \mathcal{E}_{\mathsf{sim}} \ -\log(1-\exp(-d_{ij})) & (i,j) \in \mathcal{E}_{\mathsf{dis}} \end{cases}$$

- two embeddings, one with standardization constraint, other centered
 embed into R²
- roughly 6s GPU, 30s CPU
- color by digit
 - digit label not used to make embedding

Standardized embedding (MNIST)

Centered embedding (MNIST)

Comparison to UMAP, t-SNE (MNIST)

UMAP (left) and t-SNE (right) embeddings

PCA (MNIST)

```
import pymde
mnist = pymde.datasets.MNIST()
X = pymde.pca(mnist.data, embedding_dim=2)
pymde.plot(X, color_by=mnist.attributes['digits'])
```

Laplacian embedding (MNIST)

- ▶ $f_{ij}(d_{ij}) = d_{ij}^2$, $(i, j) \in \mathcal{E}_{sim}$
- \blacktriangleright standardization constraint ${\cal S}$
- \blacktriangleright embed into \mathbf{R}^2
 - 1.8s GPU, 3.8s CPU
- \blacktriangleright embed into \mathbf{R}^3
 - 2.6s GPU, 7.5s CPU
Laplacian embedding (MNIST)

Laplacian embedding (MNIST)

```
import pymde
mnist = pymde.datasets.MNIST()
mde = pymde.preserve_neighbors(
  mnist.data.
  embedding_dim=2,
  attractive_penalty=pymde.penalties.Quadratic,
  repulsive_penalty=None,
  constraint=pymde.Standardized())
X = mde.embed()
pymde.plot(X, color_by=mnist.attributes['digits'])
```

Laplacian embedding (MNIST)

Distortions CDF (MNIST)

- sanity check: plot distortion CDFs
- most distortions small, but some very large
- plot with mde.distortions_cdf()

High distortion pairs (MNIST)

- sanity check: inspect pairs with highest distortion
- get pairs with mde.high_distortion_pairs()
- analogous to checking classification errors in machine learning
- here, images look odd or poorly paired

Standardized embedding (MNIST)

```
import pymde
mnist = pymde.datasets.MNIST()
mde = pymde.preserve_neighbors(
  mnist.data.
  embedding dim=2.
  attractive_penalty=pymde.penalties.Log1p,
  repulsive_penalty=pymde.penalties.Log,
  constraint=pymde.Standardized())
X = mde.embed()
pymde.plot(X, color_by=mnist.attributes['digits'])
```

Centered embedding (MNIST)

```
import pymde
mnist = pymde.datasets.MNIST()
mde = pymde.preserve_neighbors(
    mnist.data,
    constraint=pymde.Centered())
X = mde.embed()
pymde.plot(X, color_by=mnist.attributes['digits'])
```

Embedding (US counties)

Embedding (US counties)

Embedding (US counties)

Comparison to UMAP, t-SNE (US counties)

UMAP (left) and t-SNE (right) embeddings