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This talk

A. Agrawal, A. Ali, S. Boyd. Minimum-Distortion Embedding. Foundations
and Trends in Machine Learning, 2021.

contributions:
I a framework unifying over a century’s worth of work on embedding
I a novel algorithm for approximately solving embedding problems

(implemented in PyMDE)
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Embedding

I representation of abstract items (1, . . . , n) by vectors (x1, . . . , xn ∈ Rm)
I used for data visualization or insight, downstream computational tasks
I should be faithful to original data in some way

- if two items are similar, vectors should be near each other
- if two items are dissimilar, vectors should not be near each other

- similarity is a property of pairs of items, and is application dependent
- nearness is a property of pairs of vectors, measured in Euclidean distance
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MNIST

I handwritten digits
I 70k images
I 1.5M pairs of

similar/dissimilar images
I embed into 2 dimensions
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Applications

I interactive data exploration
- counties
- co-authorship networks
- citation networks
- genomes
- single-cell mRNA transcriptomes
- cardiac muscle movement
- rocks and minerals
- stock exchange orders
- words
- news documents
- (PyMDE has been used for all the

above)

I dimensionality reduction
I feature generation
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History: 1900-1960s

I early research in psychology
- principal component analysis [Pea01]
- multi-dimensional scaling [Ric38]

I tractable (reduce to eigenproblems)
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History: 1990s-2000

I dimensionality reduction methods
- Isomap
- locally-linear embedding
- maximum variance unfolding
- Laplacian embedding

I tractable (reduce to eigenproblems)
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History: 2000-present

I emphasis on “solving” nonconvex
problems

- t-SNE
- LargeVis
- UMAP
- neural networks

I not tractable (rely on heuristics)
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This talk

I a general framework for faithful embedding
- exactly reproduces many historical examples
- approximately reproduces others
- generates new kinds of embeddings

I an efficient heuristic optimization algorithm
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Embedding

I an embedding of items V = {1, . . . , n} items is a matrix

X ∈ Rn×m

I rows xT
1 , . . . , xT

n are the embedding vectors
I m columns are features

Minimum-distortion embedding 15



Distortion
I quality of an embedding is a function of the distances

dij = ‖xi − xj‖2, (i , j) ∈ E ⊆ V × V (i < j)

I each pair (i , j) ∈ E has an associated distortion function fij : R+ → R
I distortion of the embedding for (i , j) ∈ E is

fij(dij)

I examples

fij(dij) = wijd2
ij (wij a weight or similarity score)

fij(dij) = (dij − δij)2 (δij a deviation or original distance)
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Minimum-distortion embedding (MDE) problem

minimize E (X )
subject to X ∈ X

I X ∈ Rn×m is the variable
I E (X ) is the average distortion

E (X ) = 1
|E|

∑
(i ,j)∈E

fij(dij)

I X ⊆ Rn×m is the set of allowable embeddings
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Solving MDE problems

I intractable, except in a few special cases that we will see later
I we develop an algorithm that approximately solves MDE problems

- reliably solves tractable problems
- reliably finds good embeddings for others
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Distortion functions from weights

item pairs (i , j) ∈ E have associated weights wij ∈ R
I wij > 0 means i and j are similar
I wij < 0 means i and j are dissimilar
I magnitude of weight conveys degree of (dis)similarity

simplest example is the quadratic:

fij(dij) = wijd2
ij
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Example

I wij > 0, fij(dij) = wij log(1 + d2
ij )

I wij < 0, fij(dij) = wij log(1− exp(−dij))

I captures basic idea of faithfulness:
- vectors for similar items should be near each other
- vectors for dissimilar items should not be near each other
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Distortion functions from deviations

item pairs (i , j) ∈ E have associated deviations δij ∈ R+

I distortion function minimized when dij = δij
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Examples

I quadratic: fij(dij) = (dij − δij)2

I absolute: fij(dij) = |dij − δij |
I fractional: max{δ/d , d/δ} − 1
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Pre-processing

I often useful to preprocess raw similarity data
I somewhat of an art, like feature engineering
I assume we have some original deviations
I to emphasize local structure

- similar pairs from k-nearest neighbors of each item
- distortion functions from weights
- wij = +1 for neighbors, optionally wij = −1 for non-neighbors

I to emphasize global structure
- compute shortest path distances
- distortion functions that preserve them
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Centering constraint

C = {X | X T 1 = 0}

I centers the embedding vectors
around the origin

I without loss of generality
(distances not affected by
translation)
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Anchor constraint

A = {X | xi = xgiven
i , i ∈ K}

I pins embedding vectors for
anchored items (K)

I useful for incremental
embedding, placement problems
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Standardization constraint

S = {X | 1
nX T X = I , X T 1 = 0}

I feature columns uncorrelated
with RMS value 1

I forces vectors to spread out, but
not too much
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Quadratic MDE problem

I distortion functions
fij(dij) = wijd2

ij

and standardization constraint S = {X | 1
nX T X = I , X T 1 = 0}

I analytical solution via eigenvectors of a certain matrix
I many historical methods are special cases

- PCA (and kernel PCA)
- Laplacian eigenmap
- Isomap
- locally linear embedding
- classical MDS
- maximum variance unfolding

Minimum-distortion embedding 27



Outline

Embedding

Minimum-distortion embedding

Historical examples

Algorithms

Examples

Historical examples 28



PCA

I PCA [Pea01] starts with data matrix Y ∈ Rn×p, with rows yT
1 , yT

2 , . . . , yT
n

I embedding: top m eigenvectors of YY T

I equivalent to solving a quadratic MDE problem with

wij = yT
i yj , E = {(i , j) | 1 ≤ i < j ≤ n}

interpretation
I i and j are similar (dissimilar) if angle between yi and yj is acute (obtuse)
I neutral to (i , j) when yi , yj are orthogonal
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Laplacian eigenmap

I Laplacian eigenmap [BN02] starts with data matrix Y ∈ Rn×p

I (i , j) ∈ E if yi is among k-nearest neighbors of yj

I embedding: m bottom eigenvectors of graph Laplacian (excluding 1)
I equivalent to solving a quadratic MDE problem with wij = +1
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UMAP

I UMAP [MHM18] is a widely used dimensionality reduction method
I distortion functions from weights, with

fij(dij) = wij log(1 + αdβ), wij > 0

and
fij(dij) = wij log

(
dγ

1 + dγ

)
wij < 0

(α, β, γ are hyper-parameters); unconstrained
I E is a union of a k-nearest neighbor graph (edges have positive weights)

and random sample of its complement (edges have negative weights)
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Stationarity condition

I tangent cone to X at X is the set

TX (X ) = {V ∈ Rn×m | dist(X + hV ,X ) = o(h), h→ 0}

- V ∈ TX (X ) is called a tangent to X at X
I a direction is a feasible descent direction if

V ∈ TX (X ), tr(∇E (X )T V ) < 0

I X is stationary if the cone of feasible descent directions is empty
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Stationarity condition

I projected gradient at X with constraint X is

G = ΠTX (∇E (X ))

I −G is the steepest feasible descent direction, i.e., the solution to

minimize tr(∇E (X )T V ) + 1
2‖V ‖

2
F

subject to V ∈ TX (X )

I stationarity condition can be written as

G = 0
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Projections

algorithm requires two projections related to the constraint set X
I ΠTX , projection onto tangent cone
I ΠX , projection onto constraints
I both are analytical (and cheap) for C, A, and S

example, for standardization constraint S:

ΠTX (Z ) = Z − (1/n)XZ T X , ΠS(Z ) =
√

nUV T , Z = UΣV T

takes O(nm2) time (usually m� n)
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Traditional projected gradient method

I simplest algorithm is the traditional projected gradient method
I works, but extremely slow

for k = 0, . . .

1. Projected gradient. Compute gradient ∇E (Xk)
2. Line search. Choose step length tk
3. Update. Xk+1 := ΠX (Xk − tk∇E (Xk))
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Traditional projected gradient method
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(Doubly) projected gradient method

I more sophisticated is a doubly projected gradient method
I works, but slow

for k = 0, . . .

1. Projected gradient. Compute projected gradient Gk = ΠTX (∇E (Xk))
2. Line search. Choose step length tk
3. Update. Xk+1 := ΠX (Xk − tkGk)
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(Doubly) projected gradient method
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Projected L-BFGS method
I extension of L-BFGS to handle constraints
I gradients replaced with projected gradients
I appears to be new, though just combines some old ideas
I works, and extremely fast

for k = 0, . . .

1. Projected gradient. Compute projected gradient Gk = ΠTXk
(∇E (Xk))

2. Search direction. Compute L-BFGS search direction Vk , using Gk
3. Line search. Find step length tk
4. Update. Xk+1 := ΠX (Xk + tkVk)
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Search direction
in iteration k , search direction Vk ∈ Rn×m chosen as

vec Vk = −B−1
k vec Gk ,

where Bk ∈ Sn×m
++ is given by the recursion

B−1
j+1 =

(
I −

sjyT
j

yT
j s

)
B−1

j

(
I −

yjsT
j

yT
j sj

)
+

sjsT
j

yT
j sj

, j = k − 1, . . . , k −M,

using Bk−M = γk I (M is the memory size), and

sj = vec(Xj+1 − Xj), yj = vec(Gj+1 − Gj), γk = yT
k−1sk−1

yT
k−1yk−1
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Experiments
I quadratic MDE problem, wij = +1, edges chosen uniformly at random
I solved on CPU (quad core, 4GHz)
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Experiments

Problem dimensions Embedding time (s) Objective values
n |E| m CPU GPU E (XK ) E (X ?)

103 104 2 0.1 0.4 1.432 1.432
103 104 10 0.2 0.4 7.797 7.795
103 104 100 0.8 1.5 104.5 104.5
104 105 2 0.4 0.4 1.007 1.007
104 105 10 0.7 0.4 6.066 6.065
104 105 100 20.8 2.9 81.12 81.08
105 106 2 2.5 0.6 0.935 0.931
105 106 10 10.5 1.2 5.152 5.137
105 106 100 334.7 15.8 63.61 63.51
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Software

solution method implemented in PyMDE
I provides library of distortion functions
I extensible
I scales to many millions of items and pairs

code: https://github.com/cvxgrp/pymde
docs: https://pymde.org
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US counties
data:
I 3,220 US counties
I represented by 34 features, from 2013-17 ACS 5-Year Estimates

- demographics, income, employment, commute, . . .

embedding:
I 73k pairs of similar and dissimilar counties
I distortion functions from weights
I embed into R2

I color by fraction that voted democratic in 2016 presidential election
(voting data not used to make embedding)
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Embedding (US counties)

I ↗: NY, CA, PA . . .
I ↖: GA, MI, AL . . .
I ↙: TX, NM, AZ . . .
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Co-authorship network

data:
I 590k authors scraped from Google Scholar

- 16k authors with labeled academic discpline (bio, physics, EE, CS, AI)

embedding:
I ≈ 88M pairs of authors
I distortion functions to preserve graph distance (absolute loss)
I embed into R2
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Full network embedding (co-authorship network)
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Academic disciplines (co-authorship network)

44k authors, 88M edges: 54s (GPU)Embedding 50



Summary

I MDE generalizes well-known embedding methods and leads to new ones
I heuristic algorithm scales to millions of items and pairs
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Sanity checking

I when m is 2 or 3, color by held-out attributes
I check sensitivity by removing some distortion functions & re-embedding
I manually inspect pairs with high distortion; e.g., for MNIST:

I ultimately, validation depends on downstream application



Standardization constraint

I for X ∈ S, ∑
1≤i<j≤n

d2
ij = n2m

I the RMS value of the dij ,

dnat =
√

2nm
n − 1 ,

can be interpreted as the natural or typical embedding distance



Quadratic MDE problem

I equivalent to
minimize tr(X T LX )
subject to X ∈ S

where L ∈ Sn has upper triangular entries

Lij =

−wij (i , j) ∈ E
0 otherwise,

and diagonal entries Lii = −∑j 6=i Lij

I solution stacks m bottom eigenvectors of L, excluding 1



Graph layout
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Gradient

I index the distortion functions (and distances) in some fixed order

f1, f2, . . . , fp, p = |E|

I the gradient of the average distortion is

∇E (X ) = (1/p)ACAT X , C = diag(f ′1(d1)/d1, . . . , f ′p(dp)/dp),

where A is the incidence matrix of E
I assumption throughout: E is differentiable

- possibly nondifferentiable when embedding vectors are nondistinct
- nondifferentiability does not matter in practice



Modified Wolfe conditions

find step length tk satisfying

E (ΠX (Xk + tkVk)) ≤ E (Xk) + c1tk tr(GT
k Vk),

| tr(GT
k+1Vk))| ≤ c2| tr(GT

k Vk)|,

where 0 < c1 < c2 < 1 are constants (typically 10−4 and 0.9).
I first inequality is a modified sufficient decrease condition
I second inequality is a modified curvature condition



Experiments (GPU)
I quadratic MDE problem, wij +1, edges chosen uniformly at random
I solved on GPU (NVIDIA GeForce GTX 1070)
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Single-cell genomics

I single-cell mRNA transcriptomes
I 7 patients with COVID-19, 6 healthy controls [Wil+20]
I 44k cells (1M pairs)
I embed into 3 dimensions
I 27s CPU, 6s GPU
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MNIST

I handwritten digits
I 70k grayscale images

- 28-by-28 pixels, vectors
in R784



Pre-processing (MNIST)

I want pairs of similar and dissimilar items, Esim and Edis

I Euclidean distance is a poor global metric on images, but a good local one
I take Esim to be 15 Euclidean nearest-neighbors of images
I take Edis to be |Esim| randomly sampled non-neighbors
I E = Esim ∪ Edis, |E| = 1.5× 106



Embedding (MNIST)

I distortion functions

fij(dij) =

log(1 + d2
ij ) (i , j) ∈ Esim

− log(1− exp(−dij)) (i , j) ∈ Edis

I two embeddings, one with standardization constraint, other centered
I embed into R2

I roughly 6s GPU, 30s CPU
I color by digit

- digit label not used to make embedding



Standardized embedding (MNIST)



Centered embedding (MNIST)



Comparison to UMAP, t-SNE (MNIST)

UMAP (left) and t-SNE (right) embeddings
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PCA (MNIST)

import pymde

mnist = pymde.datasets.MNIST()
X = pymde.pca(mnist.data, embedding_dim=2)
pymde.plot(X, color_by=mnist.attributes['digits'])



Laplacian embedding (MNIST)

I fij(dij) = d2
ij , (i , j) ∈ Esim

I standardization constraint S
I embed into R2

- 1.8s GPU, 3.8s CPU
I embed into R3

- 2.6s GPU, 7.5s CPU
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Laplacian embedding (MNIST)

import pymde

mnist = pymde.datasets.MNIST()
mde = pymde.preserve_neighbors(

mnist.data,
embedding_dim=2,
attractive_penalty=pymde.penalties.Quadratic,
repulsive_penalty=None,
constraint=pymde.Standardized())

X = mde.embed()
pymde.plot(X, color_by=mnist.attributes['digits'])



Laplacian embedding (MNIST)



Distortions CDF (MNIST)
I sanity check: plot distortion CDFs
I most distortions small, but some very large
I plot with mde.distortions cdf()
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High distortion pairs (MNIST)

I sanity check: inspect pairs with highest distortion
I get pairs with mde.high distortion pairs()
I analogous to checking classification errors in machine learning
I here, images look odd or poorly paired



Standardized embedding (MNIST)

import pymde

mnist = pymde.datasets.MNIST()
mde = pymde.preserve_neighbors(

mnist.data,
embedding_dim=2,
attractive_penalty=pymde.penalties.Log1p,
repulsive_penalty=pymde.penalties.Log,
constraint=pymde.Standardized())

X = mde.embed()
pymde.plot(X, color_by=mnist.attributes['digits'])



Centered embedding (MNIST)

import pymde

mnist = pymde.datasets.MNIST()
mde = pymde.preserve_neighbors(

mnist.data,
constraint=pymde.Centered())

X = mde.embed()
pymde.plot(X, color_by=mnist.attributes['digits'])



Embedding (US counties)
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Embedding (US counties)
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Embedding (US counties)
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Comparison to UMAP, t-SNE (US counties)
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