Minimum-Distortion Embedding

Akshay Agrawal
Stanford University

July 192021

Research at Stanford

- A. Agrawal, R. Verschueren, S. Diamond, S.Boyd. A rewriting system for convex optimization problems. Journal of Control and Decision, 2018.
- A. Agrawal, et al. TensorFlow Eager: A multi-stage, Python-embedded DSL for machine learning. SysML, 2019.
- A. Agrawal, S. Diamond, S.Boyd. Disciplined geometric programming. Optimization Letters, 2019.
- A. Agrawal, S.Boyd. Disciplined quasiconvex programming. Optimization Letters, 2020.
- A. Agrawal, S. Barratt, S. Boyd, S.Diamond, J. Z. Kolter. Differentiating through a cone program. Journal of Applied and Numerical Optimization, 2019.
- A. Agrawal, B. Amos, S. Barratt, S. Boyd, S.Diamond, J. Z. Kolter. Differentiable convex optimization layers. NeurIPS, 2020.
- A. Agrawal, S. Boyd. Differentiating through log-log convex programs. Pre-print, 2020.
- A. Agrawal, S. Barratt, S. Boyd, B. Stellato. Learning convex optimization control policies. Learning for Dynamics and Control, 2020.
- A. Agrawal, S. Barratt, S. Boyd. Learning convex optimization models. IEEE Journal of Automatica Sinica, 2020.
- A. Agrawal, S. Boyd, D. Narayanan, F. Kazhamiaka, M. Zaharia. Allocation of fungible resources via a fast, scalable price discovery method. Pre-print, 2021.
- A. Agrawal, J. Zhang, S. Boyd. Doubly projected gradient methods. Draft.

This talk

A. Agrawal, A. Ali, S. Boyd. Minimum-Distortion Embedding. Foundations and Trends in Machine Learning, 2021.
contributions:

- a framework unifying over a century's worth of work on embedding
- a novel algorithm for approximately solving embedding problems (implemented in PyMDE)

Outline

Embedding

Minimum-distortion embedding

Historical examples

Algorithms

Examples

Outline

Embedding
Minimum-distortion embedding
Historical examples
Algorithms
Examples

Embedding

Embedding

- representation of abstract items $(1, \ldots, n)$ by vectors $\left(x_{1}, \ldots, x_{n} \in \mathbf{R}^{m}\right)$
- used for data visualization or insight, downstream computational tasks
- should be faithful to original data in some way
- if two items are similar, vectors should be near each other
- if two items are dissimilar, vectors should not be near each other
- similarity is a property of pairs of items, and is application dependent
- nearness is a property of pairs of vectors, measured in Euclidean distance

MOIST

- handwritten digits
- 70k images
- 1.5 M pairs of similar/dissimilar images
- embed into 2 dimensions

0000000000000000
1111111111111111
$\begin{array}{llllllllllllllll}2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}$
4444444444444444
5555555555555555
6666666666666666

$$
\begin{array}{llllllllllllllll}
7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
\hline 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
\hline 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9
\end{array}
$$

MNIST

Applications

- interactive data exploration
- counties
- co-authorship networks
- citation networks
- genomes
- single-cell mRNA transcriptomes
- cardiac muscle movement
- rocks and minerals
- stock exchange orders
- words
- news documents
- (PyMDE has been used for all the above)

History: 1900-1960s

- early research in psychology
- principal component analysis [Pea01]
- multi-dimensional scaling [Ric38]
- tractable (reduce to eigenproblems)

History: 1990s-2000

- dimensionality reduction methods
- Isomap
- locally-linear embedding
- maximum variance unfolding
- Laplacian embedding
- tractable (reduce to eigenproblems)

History: 2000-present

- emphasis on "solving" nonconvex problems
- t-SNE
- LargeVis
- UMAP
- neural networks
- not tractable (rely on heuristics)

This talk

- a general framework for faithful embedding
- exactly reproduces many historical examples
- approximately reproduces others
- generates new kinds of embeddings
- an efficient heuristic optimization algorithm

Outline

Embedding

Minimum-distortion embedding

Historical examples

Algorithms

Examples

Embedding

- an embedding of items $\mathcal{V}=\{1, \ldots, n\}$ items is a matrix

$$
X \in \mathbf{R}^{n \times m}
$$

- rows $x_{1}^{\top}, \ldots, x_{n}^{\top}$ are the embedding vectors
- m columns are features

Distortion

- quality of an embedding is a function of the distances

$$
d_{i j}=\left\|x_{i}-x_{j}\right\|_{2}, \quad(i, j) \in \mathcal{E} \subseteq \mathcal{V} \times \mathcal{V} \quad(i<j)
$$

- each pair $(i, j) \in \mathcal{E}$ has an associated distortion function $f_{i j}: \mathbf{R}_{+} \rightarrow \mathbf{R}$
- distortion of the embedding for $(i, j) \in \mathcal{E}$ is

$$
f_{i j}\left(d_{i j}\right)
$$

- examples

$$
\begin{array}{lr}
f_{i j}\left(d_{i j}\right)=w_{i j} d_{i j}^{2} & \left(w_{i j} \text { a weight or similarity score }\right) \\
f_{i j}\left(d_{i j}\right)=\left(d_{i j}-\delta_{i j}\right)^{2} & \left(\delta_{i j} \text { a deviation or original distance }\right)
\end{array}
$$

Minimum-distortion embedding (MDE) problem

$$
\begin{array}{ll}
\text { minimize } & E(X) \\
\text { subject to } & X \in \mathcal{X}
\end{array}
$$

- $X \in \mathbf{R}^{n \times m}$ is the variable
- $E(X)$ is the average distortion

$$
E(X)=\frac{1}{|\mathcal{E}|} \sum_{(i, j) \in \mathcal{E}} f_{i j}\left(d_{i j}\right)
$$

- $\mathcal{X} \subseteq \mathbf{R}^{n \times m}$ is the set of allowable embeddings

Solving MDE problems

- intractable, except in a few special cases that we will see later
- we develop an algorithm that approximately solves MDE problems
- reliably solves tractable problems
- reliably finds good embeddings for others

Distortion functions from weights

item pairs $(i, j) \in \mathcal{E}$ have associated weights $w_{i j} \in \mathbf{R}$

- $w_{i j}>0$ means i and j are similar
- $w_{i j}<0$ means i and j are dissimilar
- magnitude of weight conveys degree of (dis)similarity simplest example is the quadratic:

$$
f_{i j}\left(d_{i j}\right)=w_{i j} d_{i j}^{2}
$$

Example

- $w_{i j}>0, f_{i j}\left(d_{i j}\right)=w_{i j} \log \left(1+d_{i j}^{2}\right)$
- $w_{i j}<0, f_{i j}\left(d_{i j}\right)=w_{i j} \log \left(1-\exp \left(-d_{i j}\right)\right)$

- captures basic idea of faithfulness:
- vectors for similar items should be near each other
- vectors for dissimilar items should not be near each other

Distortion functions from deviations

item pairs $(i, j) \in \mathcal{E}$ have associated deviations $\delta_{i j} \in \mathbf{R}_{+}$

- distortion function minimized when $d_{i j}=\delta_{i j}$

Examples

- quadratic: $f_{i j}\left(d_{i j}\right)=\left(d_{i j}-\delta_{i j}\right)^{2}$
- absolute: $f_{i j}\left(d_{i j}\right)=\left|d_{i j}-\delta_{i j}\right|$
- fractional: $\max \{\delta / d, d / \delta\}-1$

Pre-processing

- often useful to preprocess raw similarity data
- somewhat of an art, like feature engineering
- assume we have some original deviations
- to emphasize local structure
- similar pairs from k-nearest neighbors of each item
- distortion functions from weights
- $w_{i j}=+1$ for neighbors, optionally $w_{i j}=-1$ for non-neighbors
- to emphasize global structure
- compute shortest path distances
- distortion functions that preserve them

Centering constraint

$$
\mathcal{C}=\left\{X \mid X^{\top} \mathbf{1}=0\right\}
$$

- centers the embedding vectors around the origin
- without loss of generality (distances not affected by translation)

Anchor constraint

$$
\mathcal{A}=\left\{X \mid x_{i}=x_{i}^{\text {given }}, i \in \mathcal{K}\right\}
$$

- pins embedding vectors for anchored items (K)
- useful for incremental embedding, placement problems

Standardization constraint

$$
\mathcal{S}=\left\{X \left\lvert\, \frac{1}{n} X^{\top} X=I\right., X^{\top} \mathbf{1}=0\right\}
$$

- feature columns uncorrelated with RMS value 1
- forces vectors to spread out, but not too much

Quadratic MDE problem

- distortion functions

$$
f_{i j}\left(d_{i j}\right)=w_{i j} d_{i j}^{2}
$$

and standardization constraint $\mathcal{S}=\left\{X \left\lvert\, \frac{1}{n} X^{T} X=I\right., X^{T} \mathbf{1}=0\right\}$

- analytical solution via eigenvectors of a certain matrix
- many historical methods are special cases
- PCA (and kernel PCA)
- Laplacian eigenmap
- Isomap
- locally linear embedding
- classical MDS
- maximum variance unfolding

Outline

Embedding
 Minimum-distortion embedding

Historical examples

Algorithms

Examples

Historical examples

- PCA [Pea01] starts with data matrix $Y \in \mathbf{R}^{n \times p}$, with rows $y_{1}^{\top}, y_{2}^{T}, \ldots, y_{n}^{T}$
- embedding: top m eigenvectors of $Y Y^{\top}$
- equivalent to solving a quadratic MDE problem with

$$
w_{i j}=y_{i}^{\top} y_{j}, \quad \mathcal{E}=\{(i, j) \mid 1 \leq i<j \leq n\}
$$

interpretation

- i and j are similar (dissimilar) if angle between y_{i} and y_{j} is acute (obtuse)
- neutral to (i, j) when y_{i}, y_{j} are orthogonal

Laplacian eigenmap

- Laplacian eigenmap [BN02] starts with data matrix $Y \in \mathbf{R}^{n \times p}$
- $(i, j) \in \mathcal{E}$ if y_{i} is among k-nearest neighbors of y_{j}
- embedding: m bottom eigenvectors of graph Laplacian (excluding 1)
- equivalent to solving a quadratic MDE problem with $w_{i j}=+1$

UMAP

- UMAP [MHM18] is a widely used dimensionality reduction method
- distortion functions from weights, with

$$
f_{i j}\left(d_{i j}\right)=w_{i j} \log \left(1+\alpha d^{\beta}\right), \quad w_{i j}>0
$$

and

$$
f_{i j}\left(d_{i j}\right)=w_{i j} \log \left(\frac{d^{\gamma}}{1+d^{\gamma}}\right) \quad w_{i j}<0
$$

(α, β, γ are hyper-parameters); unconstrained

- \mathcal{E} is a union of a k-nearest neighbor graph (edges have positive weights) and random sample of its complement (edges have negative weights)

Outline

Embedding
Minimum-distortion embedding
Historical examples

Algorithms

Examples

Algorithms

Stationarity condition

- tangent cone to \mathcal{X} at X is the set

$$
\mathcal{T}_{X}(\mathcal{X})=\left\{V \in \mathbf{R}^{n \times m} \mid \boldsymbol{\operatorname { d i s t }}(X+h V, \mathcal{X})=o(h), h \rightarrow 0\right\}
$$

- $V \in \mathcal{T}_{X}(\mathcal{X})$ is called a tangent to \mathcal{X} at X
- a direction is a feasible descent direction if

$$
V \in \mathcal{T}_{X}(\mathcal{X}), \quad \operatorname{tr}\left(\nabla E(X)^{T} V\right)<0
$$

- X is stationary if the cone of feasible descent directions is empty

Stationarity condition

- projected gradient at X with constraint \mathcal{X} is

$$
G=\Pi_{\mathcal{T}_{x}}(\nabla E(X))
$$

- $-G$ is the steepest feasible descent direction, i.e., the solution to

$$
\begin{array}{ll}
\operatorname{minimize} & \operatorname{tr}\left(\nabla E(X)^{T} V\right)+\frac{1}{2}\|V\|_{F}^{2} \\
\text { subject to } & V \in \mathcal{T}_{\mathcal{X}}(\mathcal{X})
\end{array}
$$

- stationarity condition can be written as

$$
G=0
$$

Projections

algorithm requires two projections related to the constraint set \mathcal{X}

- $\Pi_{\mathcal{T}_{x}}$, projection onto tangent cone
- $\Pi_{\mathcal{X}}$, projection onto constraints
- both are analytical (and cheap) for \mathcal{C}, \mathcal{A}, and \mathcal{S}
example, for standardization constraint \mathcal{S} :

$$
\Pi_{\mathcal{T}_{x}}(Z)=Z-(1 / n) X Z^{T} X, \quad \Pi_{\mathcal{S}}(Z)=\sqrt{n} U V^{T}, \quad Z=U \Sigma V^{T}
$$

takes $O\left(n m^{2}\right)$ time (usually $m \ll n$)

Traditional projected gradient method

- simplest algorithm is the traditional projected gradient method
- works, but extremely slow
for $k=0, \ldots$

1. Projected gradient. Compute gradient $\nabla E\left(X_{k}\right)$
2. Line search. Choose step length t_{k}
3. Update. $X_{k+1}:=\Pi_{\mathcal{X}}\left(X_{k}-t_{k} \nabla E\left(X_{k}\right)\right)$

Traditional projected gradient method

Algorithms
(Doubly) projected gradient method

- more sophisticated is a doubly projected gradient method
- works, but slow
for $k=0, \ldots$

1. Projected gradient. Compute projected gradient $G_{k}=\Pi_{\mathcal{T}_{x}}\left(\nabla E\left(X_{k}\right)\right)$
2. Line search. Choose step length t_{k}
3. Update. $X_{k+1}:=\Pi_{\mathcal{X}}\left(X_{k}-t_{k} G_{k}\right)$
(Doubly) projected gradient method

Algorithms

Projected L-BFGS method

- extension of L-BFGS to handle constraints
- gradients replaced with projected gradients
- appears to be new, though just combines some old ideas
- works, and extremely fast
for $k=0, \ldots$

1. Projected gradient. Compute projected gradient $G_{k}=\Pi_{\mathcal{T}_{x_{k}}}\left(\nabla E\left(X_{k}\right)\right)$
2. Search direction. Compute L-BFGS search direction V_{k}, using G_{k}
3. Line search. Find step length t_{k}
4. Update. $X_{k+1}:=\Pi_{\mathcal{X}}\left(X_{k}+t_{k} V_{k}\right)$

Search direction

in iteration k, search direction $V_{k} \in \mathbf{R}^{n \times m}$ chosen as

$$
\text { vec } V_{k}=-B_{k}^{-1} \text { vec } G_{k},
$$

where $B_{k} \in \mathbf{S}_{++}^{n \times m}$ is given by the recursion

$$
B_{j+1}^{-1}=\left(I-\frac{s_{j} y_{j}^{T}}{y_{j}^{T} s}\right) B_{j}^{-1}\left(I-\frac{y_{j} s_{j}^{T}}{y_{j}^{T} s_{j}}\right)+\frac{s_{j} s_{j}^{T}}{y_{j}^{\top} s_{j}}, \quad j=k-1, \ldots, k-M
$$

using $B_{k-M}=\gamma_{k} I$ (M is the memory size), and

$$
s_{j}=\operatorname{vec}\left(X_{j+1}-X_{j}\right), \quad y_{j}=\operatorname{vec}\left(G_{j+1}-G_{j}\right), \quad \gamma_{k}=\frac{y_{k-1}^{T} s_{k-1}}{y_{k-1}^{T} y_{k-1}}
$$

Experiments

- quadratic MDE problem, $w_{i j}=+1$, edges chosen uniformly at random
- solved on CPU (quad core, 4 GHz)

Algorithms

Experiments

Problem dimensions			Embedding time (s)		Objective values	
n	$\|\mathcal{E}\|$	m	CPU	GPU	$E\left(X_{K}\right)$	$E\left(X^{\star}\right)$
10^{3}	10^{4}	2	0.1	0.4	1.432	1.432
10^{3}	10^{4}	10	0.2	0.4	7.797	7.795
10^{3}	10^{4}	100	0.8	1.5	104.5	104.5
10^{4}	10^{5}	2	0.4	0.4	1.007	1.007
10^{4}	10^{5}	10	0.7	0.4	6.066	6.065
10^{4}	10^{5}	100	20.8	2.9	81.12	81.08
10^{5}	10^{6}	2	2.5	0.6	0.935	0.931
10^{5}	10^{6}	10	10.5	1.2	5.152	5.137
10^{5}	10^{6}	100	334.7	15.8	63.61	63.51

Software

solution method implemented in PyMDE

- provides library of distortion functions
- extensible
- scales to many millions of items and pairs code: https://github.com/cvxgrp/pymde docs: https://pymde.org

Outline

Embedding
Minimum-distortion embedding
Historical examples
Algorithms

Examples

US counties

data:

- 3,220 US counties
- represented by 34 features, from 2013-17 ACS 5-Year Estimates
- demographics, income, employment, commute, ...
embedding:
- 73k pairs of similar and dissimilar counties
- distortion functions from weights
- embed into \mathbf{R}^{2}
- color by fraction that voted democratic in 2016 presidential election (voting data not used to make embedding)

Embedding (US counties)

- \quad : NY, CA, PA...
-
- \swarrow : TX, NM, AZ ...

Co-authorship network

data:

- 590k authors scraped from Google Scholar
- 16k authors with labeled academic discpline (bio, physics, EE, CS, AI)
embedding:
- $\approx 88 \mathrm{M}$ pairs of authors
- distortion functions to preserve graph distance (absolute loss)
- embed into \mathbf{R}^{2}

Full network embedding (co-authorship network)

Academic disciplines (co-authorship network)

Embedding

Summary

- MDE generalizes well-known embedding methods and leads to new ones
- heuristic algorithm scales to millions of items and pairs

Acknowledgements

- PhD advisor Stephen Boyd
- undergrad advisor Mehran Sahami
- undergrad research advisor Andreas Paepcke
- defense committee, Sanjay Lall, Mert Pilanci, Ashok Srivastava
- beta readers and testers of MDE, esp. Dmitry Kobak and Lawrence Saul
- lab, esp. Alnur Ali, Guillermo Angeris, Shane Barratt, Steven Diamond, Jonathan Tuck, \& Junzi Zhang
- friends, too many to name
- family, Sarika, Ajay, and Akansha Agrawal
- Delenn Chin

References

[BN02] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural
[MHM18] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv (2018).
[Pea01] K. Pearson. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2.11 (1901), pp. 559-572.
[Ric38] M. Richardson. Multidimensional psychophysics. Psychological Bulletin 35 (1938), pp. 659-660.
[Wil+20] A. Wilk, A. Rustagi, N. Zhao, J. Roque, G. Martínez-Colón, J. McKechnie, G. Ivison, T. Ranganath, R. Vergara, T. Hollis, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nature Medicine (2020), pp. 1-7.

Sanity checking

- when m is 2 or 3 , color by held-out attributes
- check sensitivity by removing some distortion functions \& re-embedding
- manually inspect pairs with high distortion; e.g., for MNIST:

- ultimately, validation depends on downstream application

Standardization constraint

- for $X \in \mathcal{S}$,

$$
\sum_{1 \leq i<j \leq n} d_{i j}^{2}=n^{2} m
$$

- the RMS value of the $d_{i j}$,

$$
d_{\mathrm{nat}}=\sqrt{\frac{2 n m}{n-1}}
$$

can be interpreted as the natural or typical embedding distance

Quadratic MDE problem

- equivalent to

$$
\begin{array}{ll}
\text { minimize } & \operatorname{tr}\left(X^{\top} L X\right) \\
\text { subject to } & X \in \mathcal{S}
\end{array}
$$

where $L \in \mathbf{S}^{n}$ has upper triangular entries

$$
L_{i j}= \begin{cases}-w_{i j} & (i, j) \in \mathcal{E} \\ 0 & \text { otherwise }\end{cases}
$$

and diagonal entries $L_{i i}=-\sum_{j \neq i} L_{i j}$

- solution stacks m bottom eigenvectors of L, excluding 1

Graph layout

Gradient

- index the distortion functions (and distances) in some fixed order

$$
f_{1}, f_{2}, \ldots, f_{p}, \quad p=|\mathcal{E}|
$$

- the gradient of the average distortion is

$$
\nabla E(X)=(1 / p) A C A^{T} X, \quad C=\operatorname{diag}\left(f_{1}^{\prime}\left(d_{1}\right) / d_{1}, \ldots, f_{p}^{\prime}\left(d_{p}\right) / d_{p}\right)
$$

where A is the incidence matrix of \mathcal{E}

- assumption throughout: E is differentiable
- possibly nondifferentiable when embedding vectors are nondistinct
- nondifferentiability does not matter in practice

Modified Wolfe conditions

find step length t_{k} satisfying

$$
\begin{aligned}
& E\left(\Pi_{\mathcal{X}}\left(X_{k}+t_{k} V_{k}\right)\right) \leq E\left(X_{k}\right)+c_{1} t_{k} \operatorname{tr}\left(G_{k}^{T} V_{k}\right) \\
& \left.\mid \operatorname{tr}\left(G_{k+1}^{T} V_{k}\right)\right)\left|\leq c_{2}\right| \operatorname{tr}\left(G_{k}^{T} V_{k}\right) \mid
\end{aligned}
$$

where $0<c_{1}<c_{2}<1$ are constants (typically 10^{-4} and 0.9).

- first inequality is a modified sufficient decrease condition
- second inequality is a modified curvature condition

Experiments (GPU)

- quadratic MDE problem, $w_{i j}+1$, edges chosen uniformly at random
- solved on GPU (NVIDIA GeForce GTX 1070)

Single-cell genomics

- single-cell mRNA transcriptomes
- 7 patients with COVID-19, 6 healthy controls [Wil+20]
- 44k cells (1M pairs)
- embed into 3 dimensions
- 27s CPU, 6s GPU

Single-cell genomics

Single-cell genomics

MNIST

- handwritten digits
- 70k grayscale images
- 28-by-28 pixels, vectors in \mathbf{R}^{784}

0000000000000000
1111111111111111
2222222222222222
$\begin{array}{llllllllllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}$
4444444 444444444
5555555555555555
6666666666666666
$\begin{array}{lllllllllllllllll}7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\ 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\ 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9\end{array}$

Pre-processing (MNIST)

- want pairs of similar and dissimilar items, $\mathcal{E}_{\text {sim }}$ and $\mathcal{E}_{\text {dis }}$
- Euclidean distance is a poor global metric on images, but a good local one
- take $\mathcal{E}_{\text {sim }}$ to be 15 Euclidean nearest-neighbors of images
- take $\mathcal{E}_{\text {dis }}$ to be $\left|\mathcal{E}_{\text {sim }}\right|$ randomly sampled non-neighbors
- $\mathcal{E}=\mathcal{E}_{\text {sim }} \cup \mathcal{E}_{\text {dis }},|\mathcal{E}|=1.5 \times 10^{6}$

Embedding (MNIST)

- distortion functions

$$
f_{i j}\left(d_{i j}\right)= \begin{cases}\log \left(1+d_{i j}^{2}\right) & (i, j) \in \mathcal{E}_{\text {sim }} \\ -\log \left(1-\exp \left(-d_{i j}\right)\right) & (i, j) \in \mathcal{E}_{\text {dis }}\end{cases}
$$

- two embeddings, one with standardization constraint, other centered
- embed into \mathbf{R}^{2}
- roughly 6s GPU, 30s CPU
- color by digit
- digit label not used to make embedding

Standardized embedding (MNIST)

Centered embedding (MNIST)

Comparison to UMAP, t-SNE (MNIST)

UMAP (left) and t-SNE (right) embeddings

PCA (MNIST)

PCA (MNIST)

```
import pymde
mnist = pymde.datasets.MNIST()
X = pymde.pca(mnist.data, embedding_dim=2)
pymde.plot(X, color_by=mnist.attributes['digits'])
```


Laplacian embedding (MNIST)

- $f_{i j}\left(d_{i j}\right)=d_{i j}^{2},(i, j) \in \mathcal{E}_{\text {sim }}$
- standardization constraint \mathcal{S}
- embed into \mathbf{R}^{2}
- 1.8s GPU, 3.8s CPU
- embed into \mathbf{R}^{3}
- 2.6s GPU, 7.5s CPU

Laplacian embedding (MNIST)

Laplacian embedding (MNIST)

```
import pymde
mnist = pymde.datasets.MNIST()
mde = pymde.preserve_neighbors(
    mnist.data,
    embedding_dim=2,
    attractive_penalty=pymde.penalties.Quadratic,
    repulsive_penalty=None,
    constraint=pymde.Standardized())
X = mde.embed()
pymde.plot(X, color_by=mnist.attributes['digits'])
```

Laplacian embedding (MNIST)

Distortions CDF (MNIST)

- sanity check: plot distortion CDFs
- most distortions small, but some very large
- plot with mde.distortions_cdf()

High distortion pairs (MNIST)

- sanity check: inspect pairs with highest distortion
- get pairs with mde.high_distortion_pairs()
- analogous to checking classification errors in machine learning
- here, images look odd or poorly paired

Standardized embedding (MNIST)

```
import pymde
mnist = pymde.datasets.MNIST()
mde = pymde.preserve_neighbors(
    mnist.data,
    embedding_dim=2,
    attractive_penalty=pymde.penalties.Log1p,
    repulsive_penalty=pymde.penalties.Log,
    constraint=pymde.Standardized())
X = mde.embed()
pymde.plot(X, color_by=mnist.attributes['digits'])
```


Centered embedding (MNIST)

```
import pymde
mnist = pymde.datasets.MNIST()
mde = pymde.preserve_neighbors(
    mnist.data,
    constraint=pymde.Centered())
X = mde.embed()
pymde.plot(X, color_by=mnist.attributes['digits'])
```


Embedding (US counties)

Embedding (US counties)

Embedding (US counties)

Comparison to UMAP, t-SNE (US counties)

UMAP (left) and t-SNE (right) embeddings

