Domain-specific languages (DSLs) for convex optimization

- DSLs for convex optimization make it easy to specify and solve convex problems
- Modern DSLs (CVXPY, CVXR, Convex.jl, CVX) based on disciplined convex programming (DCP) [6]
- DCP is a library of functions (atoms) with known curvature and monotonicity, and a composition rule for combining them.

Geometric programming

A geometric program (GP) [5] is an optimization problem

minimize $f_0(x)$ subject to $f_i(x) \leq 1, \quad i = 1, \dots, m$ $g_i(x) = 1, \quad i = 1, \dots, p,$

- $g_i : \mathbb{R}^n_{++} \to \mathbb{R}$ are monomials: $(x_1, \ldots, x_n) \mapsto cx_1^{a_1} \cdots x_n^{a_n}, c > 0.$
- $f_i : \mathbf{R}^n_{++} \to \mathbf{R}$ are posynomials: sums of monomials

Solving a GP reduces to solving a convex optimization problem, so GPs can be solved reliably and efficiently. Applications include [3]:

- chemical engineering
- circuit design
- transformer design
- aircraft design
- mechanical engineering
- communications

Log-log convex programs

We introduce log-log convex programs (LLCPs), which generalize GPs

- For $f: D \to \mathbb{R}_{++}$, $D \subseteq \mathbb{R}_{++}^n$, $F(u) = \log f(e^u)$ is its log-log transformation
- f is log-log convex, log-log concave, or log-log affine if F is convex, concave, or affine (resp.)
- A log-log convex program is like a GP but with f_i log-log convex, g_i log-log affine

Direct analogue of the composition rule for convex functions holds for log-log convex functions

• For example, if $f : \mathbf{R}_{++}^k \to \mathbf{R}_{++}$ is log-log convex and increasing in each argument, and if f_1, \ldots, f_n are log-log convex, then $f(f_1(x), \ldots, f_k(x))$ is log-log convex

Disciplined Geometric Programming

Akshay Agrawal¹ Steven Diamond² Stephen Boyd¹

¹Stanford University, Electrical Engineering

²Stanford University, Computer Science Department

 $\frac{1}{\sqrt{2\pi}}\int_0^x e^{-t^2/2}dt$ 0.1 $\overline{10-x}$ 0.010.1 10

Examples

Log-log affine functions

- products
- ratios
- powers

Log-log convex functions

- $x_1 + x_2$, $\max(x_1, x_2)$
- posynomials
- ℓ_p norms
- $(I X)^{-1}$, (spectral radius of X less than 1)

Log-log concave functions

- $x_1 x_2$, with $x_1 > x_2 > 0$
- $-x \log x, x \in (0,1)$
- complementary CDF of a log-concave density, e.g. $\frac{1}{\sqrt{2\pi}}\int_x^\infty e^{-t^2/2}dt$

	Disciplined geometric programming
)	Analogue of DCP, but for LLCPs
	 Library of atoms with known log-log curvature (sum, product, ratio, e Atoms may be combined using the composition rule Can express LLCPs of the form
	$ \begin{array}{ll} \text{minimize} & f_0(x) \\ \text{subject to} & f_i(x) \leq \tilde{f}_i(x), i=1,\ldots,m \\ & g_i(x) = \tilde{g}_i(x), i=1,\ldots,p, \end{array} $
	with f_i log-log convex, \tilde{f}_i log-log concave, g_i and \tilde{g}_i log-log affine (m verifiable by the composition rule)
only if)	Implementation
	DGP implemented as a reduction in CVXPY 1.0:
ers are	https://www.cvxpy.org/tutorial/dgp/index.html
ot	 User types in a DGP-compliant LLCP and calls a single method to solv CVXPY reduces the LLCP to a (disciplined) convex program, solves it, returns a solution to the original problem
	import cvxpy as cp
	<pre>x = cp.Variable(pos=True)</pre>
	y = cp.Variable(pos=True)
	z = cp.Variable(pos=True)
	objective_fn = x*y*z
	constraints = [4*x*y*z + 2*x*z <= 10, x <= 2*y, y <= 2*x, z
	<pre>problem = cp.Problem(cp.Maximize(objective_fn), constraints)</pre>
	<pre>problem.solve(gp=True)</pre>
	<pre>print(problem.value)</pre>
	<pre>print(x.value, y.value, z.value)</pre>
	References
	 Akshay Agrawal, Steven Diamond, and Stephen Boyd. Disciplined geometric programming. Optimization Letters, 2019.
	[2] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd. A rewriting system for convex optimization problems. Journal of Control and Decision, 5(1):42–60, 2018.
	[3] Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A tutorial on geometric programming. Optimization and engineering, 8(1):67, 2007.
	[4] Edward Burnell and Warren Hoburg. GPkit software for geometric programming. https://github.com/convexengineering/gpkit, 2018. Version 0.7.0
	 [5] Richard Duffin, Elmor Peterson, and Clarence Zener. Geometric programming — theory and application, 1967.
	 [6] Michael Grant, Stephen Boyd, and Yinyu Ye. Disciplined convex programming. In Global optimization, pages 155–210. Springer, 2006.

[7] Constantin Niculescu. Convexity according to the geometric mean. Mathematical Inequalities and Applications, 3(2):155–167, 04 2000.

