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Domain-specific languages (DSLs) for convex optimization
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= DSLs for convex optimization make it easy to specify and solve convex
problems

= Modern DSLs (CVXPY, CVXR, Convex.jl, CVX) based on disciplined convex
programming (DCP) | 6]

= DCP is a library of functions (atoms) with known curvature and monotonicity,
and a composition rule for combining them.
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LLCPs generalize GPs and so-called generalized geometric programs (GGPs)

LLCP
GGP
GP

Properties

?Stanford University, Computer Science Department

Disciplined geometric programming

Solver

Analyzer

DSL Front End
LA

Geometric programming

A geometric program (GP) [5] is an optimization problem
minimize  fo(x)
subjectto fi(z) <1, i=1,...,m

gilx)=1, 1

" g; : R, — Rare monomials: (z1,...,ap) — ezl ap", ¢ > 0.
* fi : Rl — Rare posynomials: sums of monomials

Solving a GP reduces to solving a convex optimization problem, so GPs can be
solved reliably and efficiently. Applications include [3]:

= chemical engineering

= circuit design

= transformer design

= aircraft design

= mechanical engineering
= communications

Log-log convex programs

Convexity with respect to the geometric mean. f is log-log convex if (and only if)
it Is convex with respect to the geometric mean, i.e.

fa” oyt < f(2)' fly) "
for# € [0,1] and =,y € dom f (o is the elementwise product, and the powers are
meant elementwise)

Scalar functions. Scalar log-log convex functions are convex on a log-log plot
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Examples

Analogue of DCP, but for LLCPs

= Library of atoms with known log-log curvature (sum, product, ratio, exp, ...)
= Atoms may be combined using the composition rule
= Can express LLCPs of the form
minimize  fo(x)
subject to fi(z) < fi(x), i=1,....,m
g@(l.) §Z<x>7 Z — 17"'7p7
with f; log-log convex, f; log-log concave, g; and ¢; log-log affine (must be
verifiable by the composition rule)
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Implementation

We introduce log-log convex programs (LLCPs), which generalize GPs

*Forf:D — R4y, DCRY_, F(u)=log f(e") is its log-log transformation

= fis log-log convex, log-log concave, or log-log affine if ' is convex, concave,
or affine (resp.)

= Alog-log convex program is like a GP but with f; log-log convex, g; log-log
affine

Direct analogue of the composition rule for convex functions holds for log-log
convex functions

= For example, if f R’_Lr — Ri 1 is log-log convex and increasing in each
argument, and if fi,..., fn are log-log convex, then f(fi(z),..., fi(x)) is
log-log convex

Log-log affine functions

= products
* ratios
= powers

Log-log convex functions

* 11+ 9, max(xy,x2)

= posynomials

" {p NOrms

= (I — X)_l, (spectral radius of X less than 1)

Log-log concave functions

" r1— 29, With 1 > 29 > 0
* —xlogz, x € (0,1)

= complementary CDF of a log-concave density, e.g. [ e~ /24¢
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DGP implemented as a reduction in CVXPY 1.0:

https://www.cvxpy.org/tutorial/dgp/index.html

= User types in a DGP-compliant LLCP and calls a single method to solve it

= CVXPY reduces the LLCP to a (disciplined) convex program, solves it, and
returns a solution to the original problem

import cvxpy as cp

x = cp.Variable(pos=True)

y = cp.Variable(pos=True)

z = cp.Variable(pos=True)

objective_fn = x*y*z

constraints = [4xxxy*z + 2*x*xz <= 10, x <= 2%y, y <= 2%x, z >= 1]
problem = cp.Problem(cp.Maximize(objective fn), constraints)
problem.solve (gp=True)

print (problem.value)

print(x.value, y.value, z.value)
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