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Domain-specific languages (DSLs) for convex optimization

DSLs for convex opঞmizaঞon make it easy to specify and solve convex

problems

Modern DSLs (CVXPY, CVXR, Convex.jl, CVX) based on disciplined convex

programming (DCP) [6]

DCP is a library of funcঞons (atoms) with known curvature and monotonicity,

and a composiঞon rule for combining them.
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Geometric programming

A geometric program (GP) [5] is an opঞmizaঞon problem

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m

gi(x) = 1, i = 1, . . . , p,

gi : Rn
++ → R are monomials: (x1, . . . , xn) 7→ cxa1

1 · · · xan
n , c > 0.

fi : Rn
++ → R are posynomials: sums of monomials

Solving a GP reduces to solving a convex opঞmizaঞon problem, so GPs can be

solved reliably and efficiently. Applicaঞons include [3]:

chemical engineering

circuit design

transformer design

aircra[ design

mechanical engineering

communicaঞons

Log-log convex programs

We introduce log-log convex programs (LLCPs), which generalize GPs

For f : D → R++, D ⊆ Rn
++, F (u) = log f (eu) is its log-log transformaঞon

f is log-log convex, log-log concave, or log-log affine if F is convex, concave,

or affine (resp.)

A log-log convex program is like a GP but with fi log-log convex, gi log-log

affine

Direct analogue of the composiঞon rule for convex funcঞons holds for log-log

convex funcঞons

For example, if f : Rk
++ → R++ is log-log convex and increasing in each

argument, and if f1, . . . , fn are log-log convex, then f (f1(x), . . . , fk(x)) is
log-log convex

Hierarchy of optimization problems.

LLCPs generalize GPs and so-called generalized geometric programs (GGPs)
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Properties

Convexity with respect to the geometric mean. f is log-log convex if (and only if)

it is convex with respect to the geometric mean, i.e.

f (xθ ◦ y1−θ) ≤ f (x)θf (y)1−θ,

for θ ∈ [0, 1] and x, y ∈ dom f (◦ is the elementwise product, and the powers are

meant elementwise)

Scalar funcঞons. Scalar log-log convex funcঞons are convex on a log-log plot

Examples

Log-log affine funcঞons

products

raঞos

powers

Log-log convex funcঞons

x1 + x2, max(x1, x2)
posynomials

`p norms

(I − X)−1, (spectral radius of X less than 1)

Log-log concave funcঞons

x1 − x2, with x1 > x2 > 0
−x log x, x ∈ (0, 1)
complementary CDF of a log-concave density, e.g. 1√

2π

∫ ∞
x e−t2/2dt

Disciplined geometric programming

Analogue of DCP, but for LLCPs

Library of atoms with known log-log curvature (sum, product, raঞo, exp, ...)

Atoms may be combined using the composiঞon rule

Can express LLCPs of the form

minimize f0(x)
subject to fi(x) ≤ f̃i(x), i = 1, . . . , m

gi(x) = g̃i(x), i = 1, . . . , p,
(1)

with fi log-log convex, f̃i log-log concave, gi and g̃i log-log affine (must be

verifiable by the composiঞon rule)

Implementation

DGP implemented as a reducঞon in CVXPY 1.0:

https://www.cvxpy.org/tutorial/dgp/index.html

User types in a DGP-compliant LLCP and calls a single method to solve it

CVXPY reduces the LLCP to a (disciplined) convex program, solves it, and

returns a soluঞon to the original problem

import cvxpy as cp

x = cp.Variable(pos=True)

y = cp.Variable(pos=True)

z = cp.Variable(pos=True)

objective_fn = x*y*z

constraints = [4*x*y*z + 2*x*z <= 10, x <= 2*y, y <= 2*x, z >= 1]

problem = cp.Problem(cp.Maximize(objective_fn), constraints)

problem.solve(gp=True)

print(problem.value)

print(x.value, y.value, z.value)
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