
Differentiating through Log-Log Convex Programs
Akshay Agrawal Stephen Boyd

Stanford University, Electrical Engineering

Domain-specific languages (DSLs) for convex optimization

DSLs for convex optimization make it easy to specify and solve convex

problems

Modern DSLs (CVXPY, CVXR, Convex.jl, CVX) based on disciplined convex

programming (DCP) [7] and disciplined geometric programming (DGP) [2]

DCP, DGP are libraries of functions (atoms) with known curvature and

monotonicity, and composition rules for combining them.

p0

DSL Front End Analyzer

LP

QP

SDP

CFP

Back Ends

Si

S2

S1

...
...

Sk

Rewriting System

pn

Solver

Log-log convex programming

A log-log convex program (LLCP) [2] is an optimization problem

minimize f0(x)
subject to fi(x) ≤ 1, i = 1, . . . , m

gi(x) = 1, i = 1, . . . , p,

gi : Rn
++ → R are log-log affine: Gi(u) = log gi(eu) is affine.

fi : Rn
++ → R are log-log convex: Fi(u) = log fi(eu) is convex.

Solving a LLCP reduces to solving a convex optimization problem, so LLCPs can be

solved reliably and efficiently. LLCPs generalize the well-known class of geometric

programs (GPs), which have applications to [4]:

chemical engineering

circuit design

transformer design

aircraft design

mechanical engineering

communications

LLCPs can be specified and solved using CVXPY (see cvxpy.org).

Differentiation

Our recent work [1] lets you get the gradient of the solution of an LLCP with

respect to the parameters.

This lets you calculate the sensitivity of the solution with respect to parameters

in the objective function and constraints:

if the constraints were altered slightly, how would the solution change?

if the objective were altered slightly, how would the solution change?

It also lets you backpropagate through LLCPs, letting you use them as tunable

layers in end-to-end learning pipelines.

We have implemented the derivative of LLCPs in CVXPY, and in PyTorch and

TensorFlow using our extension package CVXPY Layers.

Example

https://www.cvxpy.org/examples/derivatives/fundamentals.html

PyTorch and TensorFlow integration

Our software lets you drop LLCPs into PyTorch or TensorFlow with just one line

This lets you tune the parameters in an LLCP using gradient descent.

Structured prediction

Using CVXPY Layers, we can learn LLCPs for structured prediction, in which the

output is known to satisfy constraints (like monotonicity)

cvxpy.org/examples/derivatives/structured_prediction.html

References

[1] Akshay Agrawal and Stephen Boyd.

Differentiating through log-log convex programs.

arXiv, 2020.

[2] Akshay Agrawal, Steven Diamond, and Stephen Boyd.

Disciplined geometric programming.

Optimization Letters, 2019.

[3] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd.

A rewriting system for convex optimization problems.

Journal of Control and Decision, 5(1):42–60, 2018.

[4] Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi.

A tutorial on geometric programming.

Optimization and engineering, 8(1):67, 2007.

[5] Edward Burnell and Warren Hoburg.

GPkit software for geometric programming.

https://github.com/convexengineering/gpkit, 2018.
Version 0.7.0.

[6] Richard Duffin, Elmor Peterson, and Clarence Zener.

Geometric programming — theory and application, 1967.

[7] Michael Grant, Stephen Boyd, and Yinyu Ye.

Disciplined convex programming.

In Global optimization, pages 155–210. Springer, 2006.

[8] Constantin Niculescu.

Convexity according to the geometric mean.

Mathematical Inequalities and Applications, 3(2):155–167, 04 2000.

cvxpy.org
https://www.cvxpy.org/examples/derivatives/fundamentals.html
cvxpy.org/examples/derivatives/structured_prediction.html
https://github.com/convexengineering/gpkit

