Differentiating through Log-Log Convex Programs

Akshay Agrawal Stephen Boyad

Stanford University, Electrical Engineering

Domain-specific languages (DSLs) for convex optimization Example PyTorch and TensorFlow integration

- DSLs for convex optimization make it easy to specify and solve convex Our software lets you drop LLCPs into PyTorch or TensorFlow with just one line

problems https://www.cvxpy.org/examples/derivatives/fundamentals.html This lets you tune the parameters in an LLCP using gradient descent.
= Modern DSLs (CVXPY, CVXR, Convex.jl, CVX) based on disciplined convex

programming (DCP) [7] and disciplined geometric programming (DGP) [2] lmport cvxpy as cp from cvxpylayers.torch import CvxpylLayer
= DCP, DGP are libraries of functions (atoms) with known curvature and import torch

. y . ¥ = cp.Variable(pos=True)
monotonicity, and composition rules for combining them. P P

y = cp.var%ahle(pﬂs=True) layer = CvxpyLayer (problem, parameters=[a, b, c],
ST z = cp.Variable(pos=True) variables=[x, y, z], gp=True)
. Rewriting System :
| Back Ends| | a_tch = torch.tensor(2.0, requires_grad=True)
R a = cp.Parameter (pos=True)
p- P b_tch = torch.tensor(1.0, requires_grad=True)

S

o
Il

cp.Parameter(pos=True)
c = cp.Parameter()

c_tch = torch.tensor(0.5, requires_grad=True)

S;

Solver Xx_star, y_star, z_star = layer(a_tch, b_tch_c_tch)

DSL | Front End Analyzer 5 : :
N J{}] . @ > S ' objective_in = 1"’{}[*?*3} sum_of_solution = x_star + y_star + z_star
(> . | objective = cp.Minimize(objective_fn) sum_of solution.backward()

constraints = [a*(x*y + x*z + y*z) <= b, x >= y*xc]
problem = cp.Problem(objective, constraints)

print(problem.is_dgp(dpp=True)) Structured prediction

Using CVXPY Layers, we can learn LLCPs for structured prediction, in which the

Log-log convex programming Z'“ai“e = f-g output is known to satisfy constraints (like monotonicity)
Lvalue = .

A log-log convex program (LLCP) [2] is an optimization problem c.value = 0.5
minimize fo(x) problem.solve(gp=True, requires_grad=True) 1.0 1
subjectto fi(z) <1, i=1,...,m
gilx)=1, i=1,...,p, print(x.value) 0.8 -
print(y.value)
- S
* g; : R, — Rare log-log affine: G;(u) = log g;(e") is affine. print(z.value) 0.6 -
" fi : RiL — Rarelog-log convex: Fj(u) = log f;(e") is convex. X A ~==least squares
0.5612147353889386 S —_—— true
Solving a LLCP reduces to solving a convex optimization problem, so LLCPs can be 0.31496200373359236 0.49 > | | | |
solved reliably and efficiently. LLCPs generalize the well-known class of geometric 0.36692005859991426 0 2 4 § 8

programs (GPs), which have applications to [4]:

a.delta = da . . o
cvxpy.org/examples/derivatives/structured prediction.html

= chemical engineering b.delta = db
* circuit design G'dita ; de .
, problem.derivative
= transformer design References
= aircraft design
. 5 . . x_hat = x.value + x.delta
* mechanical engineering y_hat = y.value + y.delta [1] Akshay Agrawal and Stephen Boycd.
: . Differentiating through log-log convex programs.
= communications z_hat = z.value + z.delta arXiv, 2020.
. . (2] Akshay Agrawal, Steven Diamond, and Stephen Boyd.
LLCPs can be specified and solved using CVXPY (see cvxpy.org). a.value += da Disciplined geometric programming.
b.value += db Optimization Letters, 2019.
. .. c.value += dc [3] Akshay Agrawal, Robin Verschueren, Steven Diamond, and Stephen Boyd.
Differentiation problem.solve (gp=True) A rewriting system for convex optimization problems.
Journal of Control and Decision, 5(1):42-60, 2018.
Our recent work [1] lets you get the gradient of the solution of an LLCP with print('x: predicted {0:.5f} actual {1:.5f}'.format(x_hat, x.value)) [4] Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi.
respect to the parameters _ o . + + . A tutorial on geometric programming.
- print('y: predicted {0:.5f} actual {1:.5f}'.format(y_hat, y.value)) Optimization and engineering, 8(1):67, 2007.
This lets you calculate the sensitivity of the solution with respect to parameters print('z: predicted {0:.5f} actual {1:.5f}'.format(z_hat, z.value)) [5] Edward Burnell and Warren Hoburg.

GPkit software for geometric programming.

in the objective function and constraints: . . |
https://github.com/convexengineering/gpkit, 2018.

= if the constraints were altered slightly, how would the solution change? x: predicted 0.55729 actual 0.55732 [é] Z-efog 37;)' - . .
L 5 . . iIchard Duffin, Elmor Peterson, an arence Zener.
if the objective were altered slightly, how would the solution change: y: predicted U.51753 actual 0.3173. Geometric programming — theory and application, 1967.
. z: predicted 0.37179 actual 0.37178 . _

't also lets you backpropagate through LLCPs, letting you use them as tunable /] 'E)A.'Chal(?' Gga”t Stephen Boyd, and Yinyu Ye.

layers in end-to-end learning pipelines. , | 'SGCI'pb'”le Convex programrng._mo e 2006
:{.gradlent = dx n Glooal optimization, pages . Springer, .

We have implemented the derivative of LLCPs in CVXPY, and in Pylorch and y.gradient = dy [8] Constantin Niculescu.

. . i _ Convexity according to the geometric mean.

TensorFlow using our extension package CVXPY Layers. Z.gradient = gz Mathematical Inequalities and Applications, 3(2):155-167, 04 2000.

problem.backward()

cvxpy.org
https://www.cvxpy.org/examples/derivatives/fundamentals.html
cvxpy.org/examples/derivatives/structured_prediction.html
https://github.com/convexengineering/gpkit

