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Abstract
We present a composition rule involving quasiconvex functions that generalizes the
classical composition rule for convex functions. This rule complements well-known
rules for the curvature of quasiconvex functions under increasing functions and point-
wise maximums. We refer to the class of optimization problems generated by these
rules, along with a base set of quasiconvex and quasiconcave functions, as disciplined
quasiconvex programs. Disciplined quasiconvex programming generalizes disciplined
convex programming, the class of optimization problems targeted by most modern
domain-specific languages for convex optimization. We describe an implementation
of disciplined quasiconvex programming that makes it possible to specify and solve
quasiconvex programs in CVXPY 1.0.

Keywords Quasiconvex programming · Convex optimization · Domain-specific
languages

1 Introduction

A real-valued function f is quasiconvex if its domain C is convex, and for any α ∈ R,
its α-sublevel sets { x ∈ C | f (x) ≤ α } are convex [5, §3.4]. A function f is
quasiconcave if − f is quasiconvex, and it is quasilinear if it is both quasiconvex and
quasiconcave. A quasiconvex program (QCP) is a mathematical optimization problem
inwhich the objective is tominimize a quasiconvex function over a convex set. Because
every convex function is also quasiconvex, QCPs generalize convex programs. Though
QCPs are in general nonconvex, many can nonetheless be solved efficiently by a
bisection method that involves solving a sequence of convex programs [5, §4.2.5], or
by subgradient methods [21,22].
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The study of quasiconvex functions is several decades old [10,24,25]. Quasicon-
vexity has been of particular interest in economics, where it arose in the study of
competitive equilibria and the modeling of utility functions [3,16]. More recently,
quasiconvex programming has been applied to control [6,15,28], model order reduc-
tion [29], computer vision [19,20], computational geometry [9], and machine learning
[17]. While QCPs have many applications, it remains difficult for non-experts to spec-
ify and solve them in practice. The point of this paper is to close that gap.

Domain-specific languages (DSLs) havemade convex optimizationwidely accessi-
ble.DSLs let users specify their programs in naturalmathematical notation, abstracting
away the process of canonicalizing problems to standard forms for numerical solvers.
The syntax ofmost DSLs for convex optimization, includingCVX [12], CVXPY [1,8],
Convex.jl [30], andCVXR [11], is determined by a grammar known as disciplined con-
vex programming (DCP) [13]. DCP includes a set of functions with known curvature
(affine, convex, or concave) and monotonicity, and a composition rule for combining
the functions to produce expressions that are also convex or concave. Some software
does exist for solving quasiconvex problems (e.g., YALMIP [23]), but no DSLs exist
for specifying them in a way that guarantees quasiconvexity.

In this paper, we introduce disciplined quasiconvex programming (DQCP), an ana-
log of DCP for quasiconvex optimization. Like DCP, DQCP is a grammar that consists
of a set of functions and rules for combining them. A contribution of this paper is the
development of a theorem for the composition of a quasiconvex function with convex
(and concave) functions that guarantees quasiconvexity of the composition. This rule
includes as a special case the composition rule for convex functions upon which DCP
is based. The class of programs producible by DQCP is a subset of QCPs (and depends
on the function library), and a superset of the class corresponding to DCP.

In Sect. 2, we review properties of quasiconvex functions, state our composition the-
orem, and provide several examples of quasiconvex functions. In Sect. 3, we describe
a bisection method for solving QCPs. In Sect. 4, we present DQCP, and in Sect. 5, we
describe an implementation of DQCP in CVXPY 1.0.

2 Quasiconvexity

2.1 Properties

In this section, we review basic properties of quasiconvex functions, many of which
are parallels of properties of convex functions; see [14] for many more.

Jensen’s inequality. Quasiconvex functions are characterized by a kind of Jensen’s
inequality: a function f mapping a set C into R is quasiconvex if and only if C is
convex and, for any x, y ∈ C and θ ∈ [0, 1],

f (θx + (1 − θ)y) ≤ max{ f (x), f (y)}.

Similarly, f is quasiconcave if and only if C is convex and f (θx + (1 − θ)y) ≥
min{ f (x), f (y)}, for all x, y ∈ C and θ ∈ [0, 1].
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Functions on the real line. For f : C ⊆ R → R, quasiconvexity can be described in
simple terms: f is quasiconvex if it is nondecreasing, nonincreasing, or nonincreasing
over C ∩ (∞, t] and nondecreasing over [t,∞) ∩ C , for some t ∈ C .

Representation via a family of convex functions. The sublevel sets of a quasiconvex
function can be represented as inequalities of convex functions. In this sense, every
quasiconvex function can be represented by a family of convex functions. If f : C →
R is quasiconvex, then there exists a family of convex functions φt : C → R, indexed
by t ∈ R, such that

f (x) ≤ t ⇐⇒ φt (x) ≤ 0.

The indicator functions for the sublevel sets of f ,

φt (x) =
{
0 f (x) ≤ t

∞ otherwise,

generate one such family. As another example, if the sublevel sets of f are closed, a
suitable family is φt (x) = inf z∈{ z | f (z)≤t } ‖x − z‖. We are typically interested in find-
ing families that possess nice properties. For the purpose of DQCP, we seek functions
φt whose 0-sublevel sets can be represented by convex cones over which optimization
is tractable.

Partial minimization. Minimizing a quasiconvex function over a convex set with
respect to some of its variables yields another quasiconvex function.

Supremum of quasiconvex functions. The supremum of a family of quasiconvex func-
tions is quasiconvex, as can be easily verified [5, §3.4.4]; similarly, the infimum of
quasiconcave functions is quasiconcave.

Composition with monotone functions. If g : C → R is quasiconvex and h is a
nondecreasing real-valued function on the real line, then f = h ◦ g is quasiconvex.
This can be seen by observing that for any α ∈ R, a point x (belonging to the domain
of f ) is in the α-sublevel set of f if and only if

g(x) ≤ sup{ y | h(y) ≤ α }.

Because g is quasiconvex, this shows that the sublevel sets of f are convex. Similarly, a
nonincreasing function of a quasiconvex function is is quasiconcave, a nondecreasing
function of a quasiconcave function is quasiconcave, and a nonincreasing function of
a quasiconcave function is quasiconvex.

2.2 Composition theorem

Abasic result from convex analysis is that a nondecreasing convex function of a convex
function is convex; DCP is based on a generalization of this result. The composition
rule for convex functions admits a partial extension for quasiconvex functions, which
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we state below as a theorem. Though the theorem is straightforward, we are unaware
of any references to it in the literature. Of course, the analog of the theorem for
quasiconcave functions also holds.

In the statement of the theorem, when considering a function f mapping a subset
C of Rn into Rk , we use f1, f2, . . . , fk to denote the components of f , i.e., the real
functions defined by

f (x) = ( f1(x), f2(x), . . . , fk(x)) (x ∈ C).

Theorem 1 Suppose h is a quasiconvex mapping of a subset C of Rk into R∪∞, and
{I1, I2, I3} is a partition of {1, 2, . . . , k} such that h is nondecreasing in the arguments
indexed by I1 and nonincreasing in the arguments indexed by I2, and g maps a subset
of Rn into Rk in such a way that its components gi are convex for i ∈ I1, concave for
i ∈ I2, and affine for i ∈ I3. Then the composition

f = h ◦ g

is quasiconvex. If additionally h is convex, then f is convex as well.

The final statement of the theorem is just the well-known composition rule for convex
functions.

We provide two proofs of this result. The first proof directly verifies that the domain
of f is convex and that f satisfies the modified Jensen’s inequality. This proof is
almost identical to a proof of the composition theorem for convex functions. The
only difference is that an application of Jensen’s inequality for convex functions is
replaced with its variant for quasiconvex functions. The second proof just applies
the composition theorem for convex functions to the representation of a quasiconvex
function via a family of convex functions.

Proof (Proof via Jensen’s inequality) Assume x, y are in the domain of f , and
θ ∈ [0, 1]. Since the components of g are convex or concave (or affine), the con-
vex combination θx + (1− θ)y is in the domain of g. For i ∈ I1, the components are
convex, so

gi (θx + (1 − θ)y) ≤ θgi (x) + (1 − θ)gi (y).

For i ∈ I2, the inequality is reversed, and for i ∈ I3, it is an equality. Since x and y are in
the domain of f , g(x) and g(y) are in the domain C of h, and θg(x) + (1− θ)g(y) ∈
C . Let ei denote the i th standard basis vector of Rk . Since h is an extended-value
function and in light of its per-argument monotonicities, C extends infinitely in the
directions −ei for i ∈ I1 and ei for i ∈ I2. This fact, combined with the inequalities
involving the components of g and the fact that θg(x) + (1− θ)g(y) ∈ C , shows that
g(θx + (1 − θ)y) ∈ C . Hence the domain of f is convex.

By the monotonicity of h and Jensen’s inequality applied to the components of g,

h(g(θx + (1 − θ)y)) ≤ h(θg(x) + (1 − θ)g(y)).
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Because h is quasiconvex,

h(θg(x) + (1 − θ)g(y)) ≤ max{h(g(x)), h(g(y))}.

Hence f is quasiconvex. ��
Proof (Proof via representation by convex functions) Let φt : C → R be a member of
a family of convex functions, indexed by t , such that φt (x) ≤ 0 if and only if h(x) ≤ t .
Assume without loss of generality that the per-argument monotonicities of φt match
those of h (e.g., take φt to be the indicator function for the t-sublevel set of h). Then
f (x) = h(g(x)) ≤ t if and only if φt (g(x)) ≤ 0. By the composition theorem for
convex functions, φt ◦ g is convex. We therefore conclude that the sublevel sets of f
are convex, i.e., f is quasiconvex. ��

2.3 Examples

Product. The scalar product f (x, y) = xy is quasiconcave when restricted to either
R2+ or R2−, where Rn+ denotes the set of nonnegative real n-vectors and Rn− the set of
nonpositive real n-vectors. The product is quasiconvex when one variable is nonneg-
ative and the other is nonpositive. From this fact and the composition rule, one can
deduce that the product of two nonnegative concave functions is quasiconcave (see
also [4,18]), and the product of a nonnegative concave function with a nonpositive
convex function is quasiconvex.

Ratio. The ratio f (x, y) = x/y is quasilinear onR×R++, as well as onR×R−− (but
not onR2), whereRn++ andRn−− denote the sets of positive and negative real n-vectors,
respectively.When x ≥ 0 and y > 0, f is increasing in x anddecreasing in y.Hence the
ratio of a nonnegative convex function and a positive concave function is quasiconvex,
and the ratio of a nonnegative concave function and a positive convex function is
quasiconcave. The problem of maximizing the ratio of a nonnegative concave function
and a positive convex function is known as concave-fractional programming [26,27].

Linear-fractional function. The function

f (x) = aT x + b

cT x + d

is quasilinear when the denominator is positive. This can be seen by the composition
rule, since the ratio x/y is quasilinearwhen y > 0. It is also quasilinearwhen restricted
to negative denominators. The problem ofminimizing a linear-fractional function over
a polyhedron is known as linear-fractional programming. Though linear-fractional
programming is often described as a generalization of linear programming, linear-
fractional programs can be reduced to linear programs [7].

Distance ratio function. The function

f (x) = ‖x − a‖2
‖x − b‖2
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is quasiconvex on the halfspace { x ∈ Rn | ‖x − a‖2 ≤ ‖x − b‖2 }. This result cannot
be derived by applying the composition rule to the ratio function, but it is simple to
show that its sublevel sets are Euclidean balls [5, §3.4].

Monotone functions on the real line. Monotone functions whose domains are convex
subsets of R are quasilinear; examples include the exponential function, logarithm,
square root, and positive odd powers.

Generalized eigenvalue. The maximum eigenvalue of a symmetric matrix is convex,
since it can be written as the supremum of a family of linear functions. Analogously,
the maximum generalized eigenvalue λmax(A, B) of a pair of symmetric matrices
(A, B) (with B positive definite) is quasiconvex, since

λmax(A, B) = sup
x �=0

xT Ax

xT Bx

is the supremum of a family of linear-fractional functions [5, §3.4]. Another way to
see this is to note that the inequality

λmax(A, B) = sup{λ ∈ R | Ax = λBx} ≤ t

is satisfied if and only if t B − A is positive semidefinite. Similarly, the minimum
generalized eigenvector is quasiconcave in A and B.

2.3.1 Integer-valued functions

Ceiling and floor. The functions �x� = inf{ z ∈ Z | z ≥ x } and �x� = sup{ z ∈ Z |
z ≤ x } are quasilinear, because they are monotone functions on the real line.

Sign. The function mapping a real number to −1 if it is negative and +1 otherwise is
quasilinear.

Rectangle. The rectangle function f : R → R given by

f (x) =
{
0 |x | > 1

2

1 |x | ≤ 1
2

is quasiconcave.

Length of a vector. The length of a vector in Rn is defined as the largest index corre-
sponding to a nonzero component:

len(x) = max{i | xi �= 0}.

This function is quasiconvex on Rn because its sublevel sets are subspaces. The
inequality f (x) ≤ α implies xi = 0 for i = �α� + 1, . . . , n.

Cardinality of a nonnegative vector. The function card(x), which gives the num-
ber of nonzero components in the vector x , is quasiconcave on Rn+: card(x + y) ≥
min{card(x), card(y)} for nonnegative x and y.
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Matrix rank. The matrix rank is quasiconcave on the set of positive semidefinite
matrices, since the rank of a sum of positive semidefinite matrices is at least the
minimum of the ranks of the matrices.

3 Solutionmethod

The problem of minimizing a quasiconvex function f : C → R can be solved in many
ways [17,21,22]. Here, we describe a simple method that reduces a QCP to a sequence
of convex feasibility problems [5, §4.2.5]. Suppose the interval [α, β] is known to
contain the optimal value p�. Put t = (α + β)/2, and let φt : C → R be a family
of convex functions indexed by t ∈ R such that f (x) ≤ t if and only if φt (x) ≤ 0.
Consider the convex feasibility problem

find x

subject to φt (x) ≤ 0.
(1)

If this problem yields a feasible point x , then p� ≤ t and in particular p� ∈ [α, f (x)];
otherwise, p� ∈ [t, β]. In either case, solving the feasibility problem yields an
interval containing the optimal value, with width half as large as the original inter-
val. To obtain an ε-suboptimal solution to the QCP, we repeat this process until
the width of the interval is at most ε, which requires at most �log2(β − α)/ε�
iterations. Of course, to apply our method, one must first find a suitable one-
parameter family of convex functions φt to represent the sublevel sets of the objective
function f .

Finding an initial interval for bisection. The optimal value p� is usually not known
before solving a QCP. In such cases, a simple heuristic can be employed to find an
interval containing it, assuming that the QCP is feasible (which can be checked by
solving a single convex feasibility problem). Start with a candidate interval [α, β],
where α < 0 and β > 0. If the problem (1) is feasible for t = β and infeasible for
t = α, then p� ∈ [α, β]. Otherwise, if the problem is infeasible for t = β, put α := β

and β := 2β. If on the other hand the problem is feasible for t = α, put β := α and
α := 2α. Repeating this process will eventually produce an interval containing p�,
provided that the QCP is not unbounded.

4 Disciplined quasiconvex programming

DQCP is a grammar for constructing QCPs from a set of functions, or atoms, with
known curvature (affine, convex, concave, quasiconvex, or quasiconcave) and per-
argument monotonicities. A program produced using DQCP is called a disciplined
quasiconvex program; we say that such programs are DQCP-compliant, or just DQCP,
for short. DQCP guarantees that every function appearing in a disciplined quasiconvex
program is affine, convex, concave, quasiconvex, or quasiconcave.
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A disciplined quasiconvex program is an optimization problem of the form

minimize f0(x)

subject to fi (x) ≤ αi , i = 1, . . . , m1
βi ≤ gi (x), i = 1, . . . , m2

f̃i (x) ≤ g̃i (x), i = 1, . . . , m3

hi (x) = h̃i (x), i = 1, . . . , p.

(2)

The functions fi must be quasiconvex, gi must be quasiconcave, f̃i must be convex,
g̃i must be concave, and hi , h̃i must be affine; αi and βi must be constants. All of the
functions appearing in (2) must be produced from atoms, using only the composition
rule from Theorem 1 and the rules governing the maximum of quasiconvex functions,
the minimum of quasiconcave functions, and composition with monotone functions
(see Sect. 2.1). Because Theorem 1 includes the composition rule for convex functions
as a special case, DQCP is a modest extension of DCP.

A mathematical expression is verifiably quasiconvex under DQCP if it is

– a convex expression;
– a quasiconvex atom, applied to a variable or constant;
– the max of quasiconvex expressions;
– a nondecreasing function of a quasiconvex expression, or a nonincreasing function
of a quasiconcave expression;

– the composition of a quasiconvex atom with convex, concave, and affine expres-
sions that satisfies the hypotheses of Theorem 1.

These rules are applied recursively, with the recursion bottoming out at variables and
constants. For example, if exp(·) and the generalized eigenvalue λmax(·, ·) are atoms,
and X and Y are matrix variables, then the expressions

λmax(X , Y ), exp(λmax(X , Y )), and exp(exp(λmax(X , Y )))

are all verifiably quasiconvex under DQCP, since exp(·) is increasing and λmax(·, ·) is
quasiconvex. Likewise, an expression is quasiconcave under DQCP if it is a concave
expression, a quasiconcave atom applied to a variable or constant, themin of quasicon-
cave functions, a nondecreasing function of a quasiconcave function, a nonincreasing
function of a quasiconvex function, or a valid composition of a quasiconcave function
with convex, concave, and affine functions.Whether an expression is convex, concave,
or affine under DQCP is precisely the same as under DCP.

A DQCP program is naturally represented as a collection of expression trees, one
for the objective and one for each constraint. Verifying whether a program is DCQP
amounts to recursively verifying that each expression tree is DQCP. For example, the
program

minimize −√
x/y

subject to exp(x) ≤ y
(3)

can be represented by the trees shown in Fig. 1. This program is DQCP when y is
known to be positive, because the ratio of a nonnegative concave functions and a
positive convex function is quasiconcave, and the negation of a quasiconcave function
is quasiconvex. The atoms in this program are the functions exp(·), √·, and ·/·.
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Fig. 1 Expression trees representing the program (3)

The ability of DQCP to express a particular QCP is limited by the atoms available
in the library. This issue is a surmountable because the atom library is extensible.

The grammar. Table 1 specifies the DQCP grammar, in the programming languages
sense [2, §4]. In the specification, S denotes the start symbol. The symbols

AFF, CVX, CCV, QCVX, QCCV

are nonterminals used to represent affine, convex, concave, quasiconvex, and qua-
siconcave expressions producible by DQCP. Their lowercase counterparts represent
atoms, e.g., cvx stands for a convex atom. Atoms can have multiple curvatures. For
example, every affine atom is also a convex atom and a concave atom. The symbols

incr, decr

denote nondecreasing and nonincreasing functions, respectively,

constant, variable

123



A. Agrawal, S. Boyd

Table 1 The DQCP grammar,
which extends DCP S →QCVX

S →QCCV

LEAF →constant

LEAF →variable

AFF →LEAF

AFF →aff(AFF, . . . ,AFF)

CVX → AFF

CVX → cvx(CVX, . . . ,CVX,CCV, . . . ,CCV,AFF, . . . ,AFF)

CCV → AFF

CCV → ccv(CCV, . . . ,CCV,CVX, . . . ,CVX,AFF, . . . ,AFF)

QCVX → CVX

QCVX → qcvx(CVX, . . . ,CVX,CCV, . . . ,CCV,AFF, . . . ,AFF)

QCVX → incr(QCVX)

QCVX → decr(QCCV)

QCVX → max{QCVX, . . . ,QCVX}
QCCV → CCV

QCCV → qccv(CCV, . . . ,CCV,CVX, . . . ,CVX,AFF, . . . ,AFF)

QCCV → incr(QCCV)

QCCV → decr(QCVX)

QCCV → min{QCCV, . . . ,QCCV}
The rules for compositions with convex, concave, and affine expres-
sions denote compositions satisfying the hypotheses of Theorem 1

denote numerical constants and optimization variables, and

cvx(CVX, . . . ,CVX,CCV, . . . ,CCV,AFF, . . . ,AFF)

denotes a composition of a convex atom with convex, concave, and affine expressions
that can be certified as convex via Theorem 1. Because DQCP is a grammar for QCPs,
it can be used to define the syntax of a DSL for quasiconvex optimization.

5 Implementation

We have implemented DQCP in CVXPY 1.0, a Python-embedded DSL for convex
optimization [1,8]. Our implementation, which is available at

https://www.cvxpy.org,

makes CVXPY the first DSL for quasiconvex optimization. Because DQCP is a gen-
eralization of DCP, it fits seamlessly into CVXPY, which parses problems using DCP
by default. Our atom library includes many of the functions presented in Sect. 2.3. We
have also implemented the bisection method described in Sect. 3.
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5.1 Canonicalization

The process of rewriting a problem to an equivalent standard form is called canonical-
ization. In CVXPY 1.0, canonicalization is facilitated by Reduction objects, which
rewrite problems of one form into equivalent problems of another form.

We have implemented a reduction called Dqcp2Dcp that canonicalizes DQCP
problems by converting them into an equivalent one-parameter family of DCP fea-
sibility problems. When applied to a DQCP problem, this reduction first introduces
a scalar parameter and constrains the problem’s objective to be no greater than the
parameter. It recursively processes this constraint and every other constraint, represent-
ing the sublevel sets of quasiconvex expressions and superlevel sets of quasiconcave
expressions in DCP-compliant ways. The reduction then emits a parameterized DCP
problem. The constraints of the emitted problem are the canonicalized constraints of
the original problem, and the goal is to find an assignment of the variables that sat-
isfies the constraints. A solution to the original problem can be obtained by running
bisection on the emitted problem.

5.2 Bisection

We have implemented the bisection routine described in Sect. 3. Our method first
checkswhether the original problem is feasible by solving a convex feasibility problem.
If the problem is feasible, our routine automatically finds an interval containing the
optimal value and then runs bisection. Our bisection routine tightens the boundaries
of the bisection interval depending on the values of the original problem’s objective
function. For example, when the objective is integer-valued, our implementation will
tighten a lower bound α to �α�, and an upper bound β to �β�.

5.3 Examples

Hello, world. Below is an example of how to use CVXPY 1.0 to specify and solve the
problem (3), meant to highlight the syntax of our modeling language. More interesting
examples are subsequently presented.

1 import cvxpy as cp
2
3 x = cp.Variable()
4 y = cp.Variable(pos=True)
5 objective_fn = -cp.sqrt(x)/y
6 objective = cp.Minimize(objective_fn)
7 constraint = cp.exp(x) <= y
8 problem = cp.Problem(objective, [constraint])
9 problem.solve(qcp=True)
10 print("Optimal value: ", problem.value)
11 print("x: ", x.value)
12 print("y: ", y.value)
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The optimization problem problem has two scalar variables, x and y. Notice that
y is declared as positive in line 3, with pos=True. The objective is to minimize
the ratio of −√

x and y, which is quasiconvex since the ratio is quasiconcave when
the numerator is a nonnegative concave expression and the denominator is a positive
convex expression. Line 6 constructs the objective of the problem. In line 7, exp(x)
is constrained to be no larger than y via the relational operator <=. Line 8 constructs
problem, which represents the optimization problem as two expression trees, one for
objective_fn and one for constraint. The internal nodes in these expression
trees are the atoms sqrt, exp, ratio (/), and negation (-). The problem is DQCP,
which can be verified by asserting problem.is_dqcp(). Line 9 canonicalizes
problem, parsing it as a DQCP (qcp=True), and then solves it by bisection. The
optimal value of the problem and the values of the variables are printed in lines 10-12,
yielding the following output.

1 Optimal value: -0.4288821220397949
2 x: 0.49999737143004713
3 y: 1.648717724845007

As this example makes clear, users do not need to know how canonicalization
or bisection work. All they need to know is how to construct DQCP problems.
Calling the solve method on a Problem instance with the keyword argument
qcp=True canonicalizes the problem and retrieves a solution. If the user forgets to
type qcp=True when her problem is DQCP (and not DCP), a helpful error message
is raised to alert her of the omission.

Generalized eigenvalue matrix completion. We have implemented the maximum gen-
eralized eigenvalue as an atom. As an example, we can use CVXPY 1.0 to formulate
and solve a generalized eigenvaluematrix completion problem. In this problem, we are
given some entries of two symmetric matrices A and B, and the goal is to choose the
missing entries so as to minimize the maximum generalized eigenvalue λmax(A, B).
Letting 	 denote the set of indices (i, j) for which Ai j and Bi j are known, the opti-
mization problem is

minimize λmax(X , Y )

subject to Xi j = Ai j , (i, j) ∈ 	,

Yi j = Bi j , (i, j) ∈ 	,

which is a QCP. Below is an implementation of this problem, with specific problem
data

A =
⎡
⎣1.0 ? 1.9

? 0.8 ?
? ? ?

⎤
⎦ , B =

⎡
⎣3.4 ? 1.4

? 0.2 ?
? ? ?

⎤
⎦ .

(The question marks denote the missing entries.)
1 import cvxpy as cp
2
3 X = cp.Variable((3, 3))
4 Y = cp.Variable((3, 3))
5 gen_lambda_max = cp.gen_lambda_max(X, Y)
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6 omega = tuple(zip(*[[0, 0], [0, 2], [1, 1]]))
7 constraints = [
8 X[omega] == [1.0, 1.9, 0.8],
9 Y[omega] == [3.0, 1.4, 0.2],

10 ]
11 problem = cp.Problem(cp.Minimize(gen_lambda_max), constraints)
12 problem.solve(qcp=True)
13 print("Generalized eigenvalue: ", gen_lambda_max.value)
14 print("X: ", X.value)
15 print("Y: ", Y.value)

Executing the above code prints the below output.

Objective: 4.000002716411653
X: [[9.99999767e-01 9.86154616e-16 1.89999959e+00]
[9.86154616e-16 7.99999761e-01 5.19126535e-15]
[1.89999911e+00 5.19126535e-15 1.25733692e+00]]

Y: [[ 2.99999980e+00 -2.78810135e-16 1.40000015e+00]
[-2.78810135e-16 1.99999804e-01 2.14473098e-16]
[ 1.40000015e+00 2.14473098e-16 1.14038551e+00]]

Notice that the gen_lambda_max atom automatically enforced the symmetry and
positive definiteness constraints on X and Y .

Minimum length least squares. Our atom library includes several integer-valued func-
tions, including the length function. As an example, the following QCP finds a
minimum-length vector x ∈ Rn that has small mean-square error for a particular
least squares problem:

minimize len(x)

subject to 1/n‖Ax − b‖22 ≤ ε.

The problem data are A ∈ Rn×n , b ∈ Rn , and ε ∈ R. Below is an implementation of
this problem in CVXPY.
1 import cvxpy as cp
2 import numpy as np
3 np.set_printoptions(precision=2)
4
5 n = 10
6 np.random.seed(1)
7 A = np.random.randn(n, n)
8 x_star = np.random.randn(n)
9 b = A @ x_star
10 epsilon = 1e-2
11
12 x = cp.Variable(n)
13 mse = cp.sum_squares(A @ x - b)/n
14 problem = cp.Problem(cp.Minimize(cp.length(x)), [mse <= epsilon])
15 problem.solve(qcp=True)
16 print("Length of x: ", problem.value)
17 print("MSE: ", mse.value)
18 print("x: ", x.value)
19 print("x_star: ", x_star)
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Running the code produces the following output.
Length of x: 8.0
MSE: 0.00926009328775564
x: [-0.26 1.38 0.21 0.94 -1.15 0.15 0.66 -1.16 -0. -0. ]
x_star: [-0.45 1.22 0.4 0.59 -1.09 0.17 0.74 -0.95 -0.27 0.03]
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