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Abstract

The theory of duality in convex analysis, a subfield of mathematical analysis that studies
convex sets and convex functions, rests upon a collection of theorems that give conditions
under which two convex sets can be separated by a hyperplane. These theorems are known as
separation theorems. In this note, we present and prove two important separation theorems.
This note is self-contained: we begin by defining convex sets, placing special emphasis on affine
sets, hyperplanes, and halfspaces. We then develop basic topological properties of convex sets,
introducing the notion of relative interior. Upon establishing these preliminaries, we state and
prove necessary and sufficient conditions for proper and strong separation of convex sets. We
close by highlighting a few important consequences of the separation theorems. For simplicity,
we limit our setting to Euclidean space; however, the approach taken here parallels one employed
in the setting of functional analysis. This note is very much modeled after [Roc70].

1 Introduction

Convex analysis is a subfield of mathematical analysis that studies convex sets and convex func-
tions. A convex set is a set that contains as subsets the line segment between any two points
belonging to the set; a convex function is any real-valued function whose epigraph is a convex set.
Convex analysis has played an outsized role in applied mathematics over the course of the past few
decades, due to the fact that the problem of minimizing a convex function admits computationally
tractable (often polynomial-time) algorithms [BV04; NN94]; as such, many students of science and
engineering feel compelled to study convex analysis. What these students will find is that convex
analysis is an elegant mathematical subject worth studying in its own right.

Central to the study of convex analysis is the duality between convex sets and hyperplanes. The
fact that a closed convex set is the intersection of all closed halfspaces containing it is of particular
importance; a primary purpose of this note is to build up to this fundamental result. To do so, we

Figure 1: Two convex sets in R2 and a hyperplane separating
them.
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will develop two separation theorems which give necessary and sufficient conditions under which
convex sets can be separated by a hyperplane. We will define separation precisely in §4, but the
intuition should be clear: a hyperplane is said to separate two convex sets if one convex set lies on
side of it, and the other set lies on the other side (see Fig. 1). For simplicity we limit our setting
to Euclidean space, i.e., Rn equipped with the usual inner product, denoted 〈·, ·〉; however, our
approach is topological and is modeled after the one in [Roc70] (see e.g. [HUL12] for a geometric
approach that exploits the structure of Rn). Readers need only know real analysis and some very
basic linear algebra to proceed.

2 Convex sets

We have already stated informally stated the definition of a convex set. For completeness, we give
a formal definition below.

Definition 2.1. A set C ⊆ Rn is said to be convex if for any points x and y belonging to C, and
for all θ ∈ [0, 1],

θx+ (1− θ)y ∈ C.

For any two points x ∈ Rn, y ∈ Rn, the set

{ θx+ (1− θ)y : θ ∈ [0, 1] } (2.1)

is called the line segment between x and y. It becomes obvious why this name is appropriate upon
rewriting (2.1) as

{ y + θ(x− y) : θ ∈ [0, 1] }.

A set containing every line through any two points belonging to the set is called an affine set.

Definition 2.2. A set A ⊆ Rn is affine if for any points x and y belonging to A, and for all θ ∈ R,

θx+ (1− θ)y ∈ A.

Clearly, every affine set is also a convex set; also, the sets {0} and Rn are trivially affine sets.
An important example of an affine set is the hyperplane.

Example 2.3. Let a be a nonzero point in Rn and let β be a real number. The set

H = {x : 〈a, x〉 = β }

is called a hyperplane.

The vector a in 2.3 is a normal to the hyperplane H, since if 0 ∈ H, then H = {x : 〈a, x−x0〉 =
0 }. Note that a and −a define the same hyperplane, and that scalar multiples of these two points
are the only normals to H. For this reason, it is natural to say that every hyperplane has two sides,
a notion we make precise in the following example.

Example 2.4. Let a be a nonzero point in Rn and β a real number. The sets

H1 = {x : 〈a, x〉 ≤ β }, H2 = {x : 〈a, x〉 ≥ β }

are called closed halfspaces. If the inequalities above are replaced with strict inequalities, the
corresponding sets are called open halfspaces. The set H = {x : 〈a, x〉 = β } is said to be the
hyperplane corresponding to the halfspaces H1 and H2, and H1 and H2 are said to be the closed
halfspaces corresponding to H.
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Every closed halfspace is also a closed set. To see this, consider a halfspace

H = {x : 〈a, x〉 ≤ β }

defined by nonzero a ∈ Rn and real β. The function f given by x 7→ 〈a, x〉 is surjective because it is
homogeneous and not identically zero, so the set (−∞, β], which is closed, is in its image. Because
f is continuous, the pre-image f−1((−∞, β]) = H is a closed set. Similarly, it can be shown that
every open halfspace is an open set.

3 Relative interiors of convex sets

It is often the case that the interiors of convex sets in Rn are empty, even when the sets have
a natural analog of an interior: for example, a disc or a triangle in R3 have empty interior with
respect to the topology of R3, even though each of these sets each would have non-empty interior
if it were projected into a affine set containing it. This motivates the concept of a relative interior,
which is the the interior of a set relative to the smallest affine set containing it.

Before proceeding, we introduce some notation that will simplify the exposition. We use B to
denote the open ball of radius 1 centered at 0 ∈ Rn, and x+ εB to denote the open ball of radius
ε > 0 centered at x. Similarly, for any set S ⊆ Rn, we write S + εB to denote the set of points
whose distance from S is less than ε, i.e.,

S + εB = {x : ‖x− y‖2 < ε for some y ∈ S }.

We define scalar multiplication of sets in the natural way: for λ ∈ R, S ⊆ Rn, λS = {λx : x ∈ S }.
Similarly, by S + T we meant the Minkowski sum: S + T = {x+ y : x ∈ S, y ∈ T }. Additionally,
we write clS to denote the closure of a set S, and intS to denote its interior.

Definition 3.1. The affine hull of a set S ⊆ Rn is the set of all affine combinations of points in
S, and it is denoted aff S:

aff S = { θ1x1 + · · ·+ θkxk : x1, . . . , xk ∈ C, θ1 + · · ·+ θk = 1 }.

Definition 3.2. The relative interior of a convex set C ⊆ Rn, which we denote riC, is the interior
of C relative to aff C, i.e.,

riC = {x ∈ C : ∃ε > 0, (x+ εB) ∩ aff C ⊆ C }

If C is open relative to aff C (equivalently, if riC = C), we say that C is relatively open.

Convex sets are topologically simple, in that their closures and relative interiors obey many
algebraic properties. Below, we develop some of these properties that we will put to use in proving
the separation theorems in §4. The proofs of these properties are not particularly enlightening,
and, as such, we choose to omit a few. Readers who seek completeness should reference [Roc70,
§6].

Theorem 3.3. Let C ⊆ Rn be a convex set, and let x ∈ riC and y ∈ clC. Then for each θ ∈ [0, 1),

(1− θ)x+ θy ∈ riC.
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Proof. We will assume for simplicity that riC = intC. In fact, this assumption does not sacrifice
generality, due to linear algebraic reasons that are outside the scope of this note (see [Roc70, p.
45]). Fix θ ∈ [0, 1). In light of our assumption, it suffices to show that there exists ε > 0 such that

(1− θ)x+ θy + εB ⊆ C.

Because y is a limit point of C, it follows that y ∈ C + εB for every ε > 0, and in particular that

(1− θ)x+ θy + εB ⊆ (1− θ)x+ θ(C + εB) + εB

= (1− θ)[x+ ε(1 + θ)(1− θ)−1B] + θC.

Because x ∈ intC, we can take ε to be so small that

(1− θ)[x+ ε(1 + θ)(1− θ)−1B] + θC ⊆ C

This proves that
(1− θ)x+ θy + εB ⊆ C,

i.e., that x ∈ intC = riC.

One useful way to rephrase Theorem 3.3 is the following: if a line segment in a convex set C
has one endpoint in riC and another in its boundary (or more generally its closure), then every
point in the segment except the boundary endpoint lies in riC. Many nice topological properties
of convex sets are consequences of this fact, including the following one.

Theorem 3.4. For any convex set C ⊆ Rn, it is always the case that cl riC = clC and ri clC =
riC.

Proof. We will prove the first claim in the theorem, that cl riC = clC. Of course, cl riC ⊆ clC,
since riC ⊆ C. For the other direction, consider any y ∈ clC, and fix some x ∈ riC (such an
x must exist whenever C 6= ∅; see [Roc70, Theorem 6.2]). The line segment between x and y,
excluding y, is a subset of riC by Theorem 3.3. Hence y is a limit point of riC, i.e., y ∈ cl riC,
proving that riC ⊆ cl riC.

Corollary 3.4.1. Let C1 and C2 be convex subsets of Rn. Then clC1 = clC2 if and only if
riC1 = riC2.

The following theorem will furnish for us two corollaries that will be useful in §4.

Theorem 3.5. Let C1, C2, . . . , Cn be convex subsets of Rn such that ∩i riCi 6= ∅. Then

cl∩ni Ci = ∩ni clCi

and
ri∩ni Ci = ∩ni riCi.

Proof. Let x be some point in ∩iCi. For any y ∈ ∩i clCi, the half-open line segment { (1−θ)x+θy :
θ ∈ [0, 1) } is contained in ∩i riCi, by Theorem 3.4, and moreover y is a limit point of this line
segment. Hence ∩i clCi ⊆ cl∩i riCi, and clearly cl∩i riCi ⊆ cl∩iCi ⊆ ∩i clCi. This proves that
cl∩ni Ci = ∩ni clCi. This chain of inclusions also shows that ∩i riCi and ∩iCi have the same closures;
by Corollary 3.4.1, we conclude that these two sets share the same relative interior, and in particular
that

ri∩iCi ⊆ ∩i riCi.

Proving the reverse inclusion requires more work, which we omit here. We refer the reader to
[Roc70, Theorem 6.5] for a complete proof.
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Corollary 3.5.1. Let C be a convex set, M an affine which has non-empty intersection with riC.
Then ri(M ∩ C) = M ∩ riC, and cl(M ∩ C) = M ∩ clC.

Corollary 3.5.2. Let C1 and C2 be convex sets such that C2 ⊆ clC1 but C2 6⊆ clC1 \ riC1. Then
riC2 ⊆ riC1.

Finally, we state one more useful fact, without proof [Roc70, Corollary 6.6.2].

Theorem 3.6. For any convex subsets C1 and C2 of Rn,

ri(C1 + C2) = riC1 + riC2,

cl(C1 + C2) ⊇ clC1 + clC2,

4 Separation theorems

We are now very nearly ready to state, and prove, two important separation theorems. Recall
that every hyperplane has exactly two halfspaces that correspond to it; we defined this precisely
in Example 2.4. For any two convex subsets C1 and C2 of Rn, a hyperplane H is said to separate
C1 and C2 if C1 is contained in one of the halfspaces corresponding to H and C2 is contained in
the other halfspace. A hyperplane separates C1 and C2 properly if both are not wholly contained
in the hyperplane. It separates the sets strongly if there exists an ε > 0 such that C1 + εB is
contained in one of the open halfspaces corresponding to H and C2 + εB is contained in the other
open halfspace.

In this section, we will present two theorems: one giving a necessary and sufficient condition for
proper separation, and the other giving a necessary and sufficient condition for strong separation.
We begin by presenting a key linear algebraic lemma.

Lemma 4.1. Let C ⊆ Rn be a non-empty relatively open convex set, and let M ⊆ Rn be a non-
empty affine set such that M ∩ C = ∅. Then there exists a hyperplane H such that M ⊆ H and
one of the two open halfspaces associated with H contains C.

Proof. If M is a hyperplane, then the result is immediate; if one of the open halfspaces of M did not
contain C, then M would have non-empty intersection with C (because C is convex), which would
contradict our hypothesis. So assume that M is not a hyperplane, and without loss of generality
assume 0 ∈M . We will construct a subspace M ′ of dimension one higher than that of M which also
does not intersect C. Because every hyperplane has dimension one minus the ambient dimension,
iterating this procedure finitely many times will yield a hyperplane that does not intersect M .

Because M is not a hyperplane, its orthogonal complement contains a two-dimensional subspace
P . Consider the set C ′ = P ∩ (C −M), and note that C −M ⊇ C (since 0 ∈M), but 0 6∈ C −M ;
hence, 0 6∈ C ′. Additionally, C ′ is a relatively open convex subset of P , by Corollary 3.5.1 and
Theorem 3.6. We seek a line L ⊆ P through 0 that does not intersect C ′, because, for any such
line L, M ′ = M +L will be a subspace of one higher dimension than M not intersecting C. If C ′ is
empty, then evidently such a line exists. Otherwise, if aff C is a line not containing 0, then we can
simply take the line parallel to aff C through 0; if aff C is a line containing 0, we can take a line
perpindicular to it containing 0. Else, if aff C is two-dimensional, then the set K =

⋃
{λC ′ : λ > 0 }

is a convex cone containing C ′ but not containing 0. In this case, we can just take L to be one of
the two boundary rays of K, extended to a line through 0.
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4.1 A necessary and sufficient condition for proper separation

The following characterization of proper separation is useful.

Lemma 4.2. Let S and T be non-empty subsets of Rn. There exists a hyperplane separating S
and T properly if and only if there exists a ∈ Rn such that

inf{ 〈a, x〉 : x ∈ S } ≥ sup{ 〈a, x〉 : x ∈ T } (4.1)

and
sup{ 〈a, x〉 : x ∈ S } > inf{ 〈a, x〉 : x ∈ T }. (4.2)

Proof. Assume that a ∈ Rn satisfies (4.1) and (4.2), and fix any β such that

inf
x∈S
{〈a, x〉} ≥ β ≥ sup

x∈T
{〈a, x〉}.

Because a satisfies (4.2), a 6= 0. So H = {x : 〈a, x〉 = β } is a hyperplane. By our choice of β, the
closed halfspace {x : 〈a, x〉 ≥ β } contains C1, and the other closed halfspace corresponding to H
contains C2. Furthermore, (4.2) implies that C1 and C2 are not both contained in H. Hence H
separates C1 and C2 properly.

Now assume that C1 and C2 are separated properly by some hyperplane parameterized by
a ∈ $Rn and β ∈ R such that C1 ⊆ {x : 〈a, x〉 ≥ β } and C2 is contained in the other halfspace.
Then 〈a, x〉 ≥ β for every x ∈ C1 and 〈a, x〉 ≤ β for every x ∈ C2, so in particular

inf{ 〈a, x〉 : x ∈ S } ≥ sup{ 〈a, x〉 : x ∈ T }.

The fact that the hyperplane separates C1 and C2 properly means that for at least one x ∈ C1,
〈a, x〉 > β and, similarly, for at least one x ∈ C2, 〈a, x〉 < β. This implies (4.2).

We are now ready to state and prove the first of our two separation theorems, which states that
two convex sets can be separated properly if and only if their relative interiors do not meet.

Theorem 4.3. Let C1 and C2 be non-empty convex subsets of Rn. There exists a hyperplane
properly separating C1 and C2 if and only if riC1 ∩ riC2 = ∅.

Proof. Let C = C1−C2. By Theorem 3.6, riC = riC1−riC2, which means that 0 6∈ riC if and only
if riC1 ∩ riC2 = ∅. Because 0 6∈ riC, the affine set M = {0} does not intersect riC; by Lemma 4.1,
there exists a hyperplane containing M such that riC is a subset of one of its corresponding open
halfspaces. And, because C ⊆ cl(riC) (by Theorem 3.4), the closure of that halfspace contains C.
Hence, there exists a (nonzero) a ∈ Rn such that

0 ≤ inf{ 〈a, x〉 : x ∈ C } = inf{ 〈a, x〉 : x ∈ C1 } − sup{ 〈a, x〉 : x ∈ C2 },

0 < sup{ 〈a, x〉 : x ∈ C } = sup{ 〈a, x〉 : x ∈ C1 } − inf{ 〈a, x〉 : x ∈ C2 }

By Lemma 4.2, this implies that C1 and C2 and be separated properly. The above conditions
actually imply that 0 6∈ riC: speficially, they imply that the halfspace S = {x : 〈a, x〉 ≥ 0 }
contains C such that intD = riD 63 0 intersects C. This means that riC ⊆ riD (by Corollary 3.5.2).

Theorem 4.3 implies a fact that is very intuitive, at least in the setting of R3: non-empty disjoint
convex sets can be properly separated.
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Corollary 4.3.1. If C1 and C2 are non-empty, disjoint convex subsets of Rn, then there exists a
hyperplane that properly separates them.

Proof. If C1 and C2 do not meet, then their relative interiors do not meet. Hence by the previous
theorem they can be properly separated.

Note that disjointness is not enough to imply strong separation, for the closures of C1 and C2

might meet.

4.2 A necessary and sufficient condition for strong separation

The necessary and sufficient condition for strong separation is quite intuitive: two non-empty convex
sets can be separated strongly precisely when the distance between the two sets is positive.

Theorem 4.4. Let C1 and C2 be non-empty convex subsets of Rn. There exists a hyperplane
strongly separating C1 and C2 if and only if

inf{ ‖x1 − x2‖2 : x1 ∈ C1, c2 ∈ C2 } > 0,

i.e., if and only if 0 is not in cl(C1 − C2).

Proof. If C1 and C2 admit a strong separation, then there exists a positive ε such that the open
ball C1 + εB does not intersect the ball C2 + εB; this implies that the distance between C1 and C2

isp positive. Conversely if C1 + εB and C2 + εB do not meet, they can be properly separated (by
Corrolary 4.3.1). It follows that the sets C1 + ε/2B and C2 + ε/2B lie in opposite open halfspaces,
and in particular that C1 and C2 can be strongly separated. To summarize, we have that C1 and
C2 can be strongly separated if and only if there exists an ε > 0 such that C1 + εB does not meet
C2 + εB, i.e.,

0 6∈ (C1 + εB)− (C2 + εB) = C1 − C2 − 2εB.

This in turn implies that 2εB ∩ (C1 − C2) = ∅, i.e., 0 6∈ cl(C1 − C2).

5 Applications

Separation theorems have many interesting consequences, both in convex analysis itself and in
applications such as convex optimization and economics. In this section, we present two important
consequences within convex analysis.

5.1 Duality between convex sets and halfspaces

At the heart of duality in convex analysis is the fact that a closed convex set is the intersection of
all halfspaces containing it. Or, put another way, every closed convex set can be expressed as the
set of solutions to a system of (non-strict) linear inequalities 〈ai, x〉 ≤ βi for i in an index set.

Theorem 5.1. A closed convex set is the intersection of all the halfspaces that contain it.

Proof. The theorem is trivial whenever C = 0 or C = Rn, so let us assume that neither of these
situations are the case. For any a 6∈ C, the convex sets {a} and C admit strong separation by
Theorem 4.4, i.e., there exists a hyperplane separating them strongly. One of the corresponding
closed halfspaces contains C but not a. Hence, the intersection of all closed halfspaces containing
C is exactly equal to C.
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5.2 Supporting hyperplanes

Let S be a subset of Rn, and let x0 be a point in its boundary. If a 6= 0 satisfies 〈a, x〉 ≤ 〈a, x0〉 for
all x ∈ S, then the hyperplane {x : 〈a, x〉 = 〈a, x0〉 } is called a supporting hyperplane to S at x0.
Equivalently, this hyperplane separates {x0} and S and contains {x0}. We refer to the halfspace
{x : 〈a, (x− x0)〉 ≤ 0, x ∈ S } corresponding to a supporting hyperplane {x : 〈a, x〉 = 〈a, x0〉 } of
S as a supporting halfspace of S.

Theorem 5.2. Let C be a non-empty convex subset of Rn, and let x be any point in the boundary
of C. Then there exists a supporting hyperplane to C at x.

Proof. If the interior of C is non-empty, then the sets ri{x} = {x} and intC are disjoint. By
Corollary 4.3.1, these sets can be properly separated, implying that {x} and C can be separated
(not necessarily properly). If on the other hand intC = ∅, then C is a subset of an affine set
with dimension strictly less than n. Hence it is entirely contained in some hyperplane, and this
hyperplane trivially separates {x} and C.

Theorems 5.1 and 5.2 immediately imply the following corollary.

Corollary 5.2.1. A closed convex set C is equal to the intersection of its supporting halfspaces.

Example 5.3. A cone is a set K with the property that if x ∈ K, then θx is also in K for all θ ≥ 0.
The dual cone K∗ of K is the set { y : 〈y, x〉 ≥ 0, x ∈ K}. Geometrically, y ∈ K if and only if −y
supports K at the origin, i.e., the dual cone K∗ is the set of supporting hyperplanes of K (up to
a change in sign). Hence, the dual cone derives its name from the duality between halfspaces and
convex sets.

Convex cones and their duals arise frequently in convex optimization; they play a role analogous
to subspaces in linear algebra. While convex optimization is in general NP-hard, Nesterov and
Nemirovski [NN94] showed that the problem of minimizing linear functions over cross-products of
certain convex cones can be solved in polynomial time (up to an additive ε error).

Example 5.4. The epigraph of a real-valued function f is the set { (x, t) : f(x) ≤ t }. A convex
function is a real-valued function whose epigraph is a convex set; if the epigraph of a convex function
is closed, the function is said to be closed. By theorem 5.1, the epigraph of a convex function is
equal to the intersection of all the halfspaces containing it, and by corollary 5.2.1, the epigraph of
a closed convex function can be described as the intersection of its supporting halfspaces.

References

[BV04] Boyd, S. and Vandenberghe, L. Convex Optimization. New York, NY, USA: Cambridge
University Press, 2004.
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